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Abstract. We study systems without quenched disorder with a complex landscape, and we 
use replica-symmetry theory to describe them. We discuss the Golay-Bemasconi-Derrida 
approximation of the low autocorrelation model, and we reconsuuct it by using replica 
calculations. We then consider the full model. its low-T properties (with the help of number 
theory) md a Hartree-Pack resummation of the high-temperature series. We show that replica 
theory allows us to solve the model in the high-T phase. Our solution is based on one-link 
integral techniques, and is baed  on substituting a Fourier transform with a generic unitnry 
transformation. We discuss this appmach as a powerful tool to describe systems with a complex 
Imdscape in the absence of quenched disorder. 

1. Introduction 

This paper has been prompted by two main motivations. One comes from a problem 
whose solution has relevant practical applications, while the other one is more abstract in 
nature, and is generated from what we have learned in the last few years about disordered 
systems [1,2]. 

We will be dealing with the problem of finding binary sequences with low 
autocorrelation [3-51. Sequences of this kind are important in favouring efficient 
communication, and the practical side of the problem is obvious. We hope we will convince 
the reader that it is also fascinating from a theoretical point of view. 

When we search binary sequences of +I and -1 having minimal autocorrelation we 
are dealing with a completely deterministic problem, and disorder is not a part of the 
game. In our starting rules there is nothing random. Still, we will see how the system can 
indeed have a behaviour that is very much reminiscent of a random system. Changing one 
spin to optimize a given set of correlations can increase other correlation functions, with 
a competitive effect which tums out to be typical of a system which contains disordered 
couplings. We will see that replica-symmetry theory [I,?-] can be a useful tool even for 
describing this kind of system. We will be able, by using the analogy with a relevant 
disordered system, to capture the general features of the model. We will try to understand 
and stress the differences which distinguish a low autocorrelation model from a spin-glass- 
like model; this will lead us to a detailed discussion of the low-temperature properties of 
the low autocorrelation model. 

0305-4470/94/237615t31519.50 @ 1994 IOP Publishing Ltd 1615 
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We present a careful investigation of some statistical mechanic aspects of the problem, 
by largely extending previous results due to Golay [4] and to Bernasconi [SI. We establish 
a relation between this deterministic problem and random spin glasses, which we consider a 
very interesting outcome of this study. Some ideas typical of spin glasses, such as replica- 
symmetry breaking, can be used successfully in this context. 

In section 2 we define the models we will discuss in the rest of the paper. In section 3 
we discuss the ground-state structure of the model (also by using well known number 
theory; see, for example, [6]) and we begin a discussion of its phase diagram and of 
the low-temperature phase. In section 4 we discuss the validity of the Golay-Bernasconi 
approximation. We introduce the replica-symmehy approach, define a disordered model 
and study its behaviour. In section S we investigate, in more detail, the high-temperature 
regime. We perform and describe a high-temperature expansion. We introduce a Hartre5 
Fock approximation which allows us to write a closed form for the free-energy. 

In section 7 we discuss the full phase diagram of the model. In section 6 we introduce 
one more model which can be solved by using the replica approach. The solution is the 
same as we get with the Hartree-Fock approximation. In section 8 we draw our conclusions. 

The readers who find this problem interesting will be happy to know that much related 
material is becoming available. Reference 171 mainly contains a study of the dynamical 
properties of the system which uses the tempering Monte Carlo approach [SI. Reference 
[9] discusses aging in low autocorrelation models. References [ 10.111 introduce and 
discuss more models and analogies with random systems (and, in particular, the open low 
autocorrelation model: see later). More results, which partially overlap with ours, will be 
discussed by Bouchaud and MBzard in [ 121. 

2. Definition of the model 

Let us consider a sequence of length N of spin variables uj. They are labelled by a o n e  
dimensional index j (U,. j = 1 ,  N ) ,  and can take the values & I .  The Hamiltonian is defined 
by 

where Ck is the sum of the uj - uj correlation functions at a distance k = li - j l .  The 
choice of the boundary conditions, i.e. of the terms we will include in the sum ( I ) ,  allows 
us to define two different models. 

a The open model is defined by using open boundary conditions. In this case Ck is 
obtained by summing N - k terms: 

N - k  
CA ujuj+t . 

j = l  

e The periodic model is defined by using periodic boundary conditions. Here we are 
considering a closed chain, and 

Here we have summed N contributions, considering all spin couples at a distance k on 
the closed chain. 
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The periodic model has some peculiarities which allow us to study it in greater detail. 
The main tool we will use is the Fourier-transform. We can rewrite the periodic Hamiltonian 
as 

N 

where the B ( p )  are the Fourier-transformed ai, and the Fourier transform is defined as 

In equation (4)  we had to subtract a constant factor since in the sum of (I) we do not include 
the constant correlation at distance zero. 

In this paper we will focus on the periodic model. Further results about the open model 
will be given in [Ill.  

As we have already discussed, much attention has been devoted to the problem of 
finding the ground state of such a model [3-5]. Here we will continue this effort, but we 
will also (and mainly) extend our study to the thermodynamical behaviour of the model. 
We will study its behaviour as a function of the inverse temperature B = 1/T. Our main 
efforts will be devoted to the computation of the freeenergy density. We define the partition 
function of our system as 

where the sum runs over the 2" allowed configurations of the spin variables, and the free- 
energy density as 

Once again, we note that this approach has both a practical interest and a theoretical 
one. It is interesting to study the full thermodynamical behaviour of the system since this 
gives more information about the features of the low autocorrelation sequences. We will be 
interested, for example, in their number and their basin of attraction, and in their stability 
properties (which can be very relevant for practical applications). On the other hand such a 
statistical mechanics approach will help us to shift towards the realm of disordered systems. 

3. The ground-state energy and a first look at thermodynamics 

The ground state of the periodic model defined by the Hamiltonian ( I )  (with C, given by (3)) 
is not known in general. No systematic procedure to construct ground-state configurations 
for generic N is known. A remarkable exception holds for given values of N ,  where ad hoc 
constructions exist. Such constructions are mainly based on number theory 161, and they 
produce spin sequences with a total energy of order 1, i.e. with an energy density e E H / N  
of order 1 / N  (which tends to zero in the thermodynamical limit). 

Let us describe a simple construction+, which works when N is a prime larger than 2 
[6]. We set the uj variables to -1, 0 or + 1  by identifying 

aj = j f ( N - l ) m d  N ,  (8) 
t The same spin sequence on be obtained by directly using Legendre quuhaltc residues 161. For all positive 
integer j c N we compute 3 ( j  . j )  (mod N ) ,  and we set OJ = + I .  In all locations but the N t h  one (where 
we set oN = 0). which cannot be obtained through lhis procedure, we set q = -1. 
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In this way we gett u j  = + I  for j < N ,  and UN = 0. For example, for N = 13, by using 
this construction we get the sequence 

j 1 Z 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3  
uj + I  - 1  +I + I  -1 -1 - 1  -1  + I  +I -1 + I  0. 

By following this procedure we have obtained a sequence which, except for its last spin, 
is a legitimate one (in the sense that it is composed by +I). Now we will proceed by first 
evaluating the energy of this quasi-legal sequence, and eventually by computing the effect 
of modifying the last spin to f l ,  to get a truly legal sequence. We will show that such a 
sequence is, in some cases, a true ground state (i.e. it has the minimum allowed energy). 

Computing the energy of such a sequence is an easy task. Theorems well known by 
mathematicians [6] tell us that in this case all correlation functions Ca are equal to - 1 (we 
remind the reader we are discussing the periodic model). We can also use Gauss' theorem 
[6] to notice that here the Fourier-transformed variables take the form 

B ( P )  = G(N) 0, (9) 
where G ( N )  = 1 if the prime N has the form 4n + 1 (with positive integer n ) ,  and 
G ( N )  = -i if it has the form 4n + 3 (in other words, on our sequences the Fourier- 
transformed variables are equal or proportional to the original x-space variables). It is clear 
that the Hamiltonian (1) of the periodic model takes the value 1 on our slightly illegal spin 
sequence. 

Now we have to understand what happens when we modify the spin UN, by setting it 
to 41. It is easy to see that, when we do, the Hamiltonian changes by a finite amount. 
Indeed, for N of the form 4n + 3 the Hamiltonian does not change, and keeps it value of 
1. The point is that (as can be easily verified by inspection) the il sequences are, in this 
case, antisymmetric around the site N .  For N of the form 4n + I the il sequences are 
symmetric around the site N ,  and on the fully legal sequence H takes a value of 5. 

Since we are considering N odd, it is clear that for N prime of the form 4n + 3 the two 
fully legal sequences we have built (and the sequences obtained by using the translational 
invariance of the problem, and the + I  symmetry) are true ground states. This is because 
for N odd the minimum value allowed for each Ca is 1, and the minimum value allowed 
for H is 1. We have exhibited configurations with the minimal allowed energy, i.e. ground 
states. 

Let us state again our conclusion. In the case of N prime of the form 4n + 3 we 
have obtained a thermodynamical ground state, whose energy density goes to zero when 
the volume goes to infinity. Translational invariance and spin-flip invariance imply that the 
degeneracy of the ground state is at least 2 N .  

For other values of N ,  for example, of the form N = 20 - I ,  there are alternative 
techniques to construct the gound state, based, for example, on the theory of Galois fields 
[6]. For example, for N = Z57 - 1 = 144 115 188075855871 one finds that the sequence 
which satisfies the relation 

aj = aj-24aj-57 (10) 
is a ground state. If we exclude the trivial case of U; identically equal to 1 (which is not a 
ground state), such a sequence is unique, apart from a translation$ [6,13]. 

f A theorem by Fermt [6] tells us that if j is not a multiple of N than j(N-') = 1, mod N. Therefore in this 

$ The sequence is specified by its fin1 p = 57 elements. Therefore there 2 p  - 1 different sequences, which is 
exnclly the number of possible anslntions. It cm be shown thal every subsequence of p elements appears once 
and once only, apart from the subsequence with all 1's. which is forbidden. 

case j k ( N - 1 )  = * I ,  
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It is rather interesting to note that in this case the Fourier transform is also very similar 
to the original sequence. One finds that there exists a value of s such that 

5(p) = up+.;. (11) 

The deep reasons for this duality between the configuration and Fourier space escape us. 
It is quite remarkable that this last sequence is considered, to all practical effects, a 

good random sequence (see, for example, [131). We can summarize the status of things 
by saying that the ground state of our model can be obtained as the output of Q random 
number generator! This is surprising, but maybe not so much. When designing a random 
number generator one wants bit sequences with low autocorrelation. This means that for 
large values of N the correlation functions should not be proportional to N .  A true sequence 
of random numbers should have autocorrelations of order N’/*. One is doing ‘better’ than 
this by obtaining sequences with autocorrelation of order 1, and does not seem to cause any 
practical problem. 

For generic values of N we do not have any method to explicitly exhibit the ground state, 
and we do not know the ground-state e n e r a .  The very existence of the thermodynamic 
limit is non-trivial. One could get different results when N goes to infinity depending on 
the arithmetic properties of the N sequence one selects. We shall see later that in the high- 
temperature region the N-‘ corrections are different for sequences consisting of even or 
odd values of N. The corrective terms proportional to N - 3  also change depending whether 
one selects an N series such that N is or is not a multiple of 3. We will see that, in general, 
things become more and more complex when we look at higher-order corrections. 

In order to get the first hints about the ground states and the thermodynamical behaviour 
of the system we have used two approaches. In the first approach we have solved exactly 
(by computing the density of states by exact enumeration) systems of size up to N = 38. 
By examining all configurations we have computed the number of configurations of a given 
energy N ( E )  as a function of E .  We have looked at the ground-state energy EO, and stored 
and analysed the ground-state and the first-excited-state configurations (at least for some of 
the N values). From N ( E )  we are able to reconstruct the partition function, the free-energy 
density and all the related thermodynamical quantities. 

As a second step we have looked for the ground-state energy by using a minimization 
procedure. For a given N value we start from a random a; configuration, and we minimize 
its energy by single spin-flips. We repeat this procedure until satisfied. We assume we have 
reached the ground state when the minimum energy has been found F timest. In the case 
where we also have the exact solution (N 6 38) this procedure easily gives the correct 
ground-state energy. The choice of F = 100 recognitions is still safe in the region with 
N going up to N = 50. Lowenergy states with a small basin of attraction are the most 
dangerous. For the case of the good prime N = 47 (where by good we mean here of the 
form 4n + 3) the first excited state is found a number of times of the order of 50 before 
finding the true ground state (which in this case, as we have explained, we know exactly). 

In figure 1 we plot ( N  - 1) times the ground-state energy as a function of N .  The small 
filled triangles are from the minimization search. For N < 38 they are circled by larger 
empty circles (which reminds the reader that in this case we also have the exact result, 
which coincides with the the minimization result). 

At first glance the ground-state energy (EO)  depends quite randomly on N .  but we notice 
some regular patterns which can be of some importance. 

t lo 1141 we me using the same procedure to try to find all solutions of h e  mean-field equations for the random- 
field king model in 30. 
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Figure 1. The ground-state emrgy limes (N - 1) as a function of N ,  The small lull triangles 
are from the minimiation s m h .  For N < 38, where we also hwe the exact solution, the small 
triangles are circled by larger open circles. 

For N prime of the form 4n + 3 the ground-state energy is the one given by the exact 
construction we have described before. This is a test of our programs and procedures. 
For N of the form 4n + 2, n zero and a positive integer, i.e. for all of the n we have 
analysed, we find 

E N  = 4 .  (12) 

We cannot be sure that this behaviour is not an accident, but we have to note that we 
find it for all values of N of this kind. 
For N of the form 4n + 1, n >, 8, i.e. for N 2 33, we have found that 

For N of this form, even for N prime, our number-theory-based ground-state 
construction does not necessarily give a ground state. 

We can use these results to try some claims about the N -+ 03 limit for the ground-state 
energy. The merit factor, used for estimating how good a low autocorrelation sequence is, 
for a sequence of length N (and N large, or to agree with standard definitions we need to 
multiply by N and divide by N - 1) is given by 

If the energy goes to a constant value in the large-N limit, that means that the system 
will have a zero energy density, and a diverging merit factor. We know for the primes N 
of the form 4n + 3 this is exactly what happens. But we also know that such N values 
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Figure 2. N(E), the number of configurations of energy E as a function of E .  (a)  N = 31 (a 
good prime); (b) N = 33 (of the form 4n + 1, non-prime): (c) N = 34 (of the form 4n t 2); 
( d )  N = 31 (of the farm 4" + I ,  prime). 

have zero measure, and selecting such a sequence could not be a reliable way to go to 
the infinite-volume limit for generic values of N .  If the behaviour we have described 
in (12) and (13) survives in the large-N limit, we have two finite measure sequences 
(including one N value over 2) which asymptotically have a zero energy density. For the 
other N values we are not able to draw even tentative and qualitative conclusions like the 
above. 

The number of configurations of a given energy H(E)  allows us, as we have explained, 
to evaluate the thermodynamical properties of the system. In figures 2 ( a t ( d )  we show 
N(E),  the number of configurations of energy E as a function of E ,  for N = 31 (a good 
prime), 33 (of the form 4n + 1, non-prime), 34 (of the form 4n + 2) and 37 (of the form 
4n + 1, prime), respectively. In figures 3 and 4 we show the internal energy minus the 
ground-state energy (normalized between zero and one) and the specific heat as a function 
of T ,  for the same N values and a smaller volume, N = 19, respectively. 

At this point we are able to draw a few tentative conclusions. 
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FIpm 3. The internal energy E ( T )  minus Ihe mound-state energy (and normalized between 
zero and one) as a function of T, respectively for N = 19 and 31 (good primes chain and dotted 
curve. respectively). 33 (of the form 4n t 1. non-prime. shorl broken curve), 34 (of the form 
4n t 2. long broken curve) and 37 (of the form 4n t 1, prime, full curve). 

Figure 4. As in figure 3, but for the specific hen1 as a function of T. 
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Changing N by a small amount, typically AN = 1 (when N is already of order 40). 
induces large variations in the thermodynamic observable quantities in the IOW-T region. 
Fluctuations from one volume size N to a similar one are large. and macroscopic. Such 
fluctuations forbid any simple extrapolation to the N + CO infinite-volume limit (they 
decrease, however, for increasing N). Their amplitude is compatible with also being 
proportional to N-' at finite temperature. 
A pronounced peak in the specific heat increases with N, suggesting strongly that in 
the infinite-volume limit the system undergoes a phase transition. The T position of the 
maximum of the specific heat decreases with increasing N (in an irregular pattern). In 
the region of N Y 30-40 from the position of the peak we estimate a critical temperature 
T, Y 0.5. The nature and the order of the phase transition are difficult to assess. 
The density of states N(E) for low energies depends on E approximately as 

N(E) = 2 N  eAE (1.9 

(remember that the minimal degeneracy of the ground state is 2 N ) .  In our N region 
A turns out to be strongly dependent on N.  Such a dependence can be fitted well by 
a linear behaviour, This is the same effect we can see in the N dependence of the 
location of the peak in figure 4. For our large-N values (of order 3 M O )  the constant 
A is of the order of 1.5. 
The configurations with energy slightly larger that the ground-state energy are on average 
not similar to the ground state. The typical mutual overlap of a ground state and a first 
excited state is not large when N increasest. In particular, typical first-excited-state 
configurations are not obtained by a single spin-flip operation on one of the ground 
states. The configurations which are generated by a single spin-flip on the ground state 
have, on average, energy higher than the first excited state. For example, in the case 
of N prime of the form 4n + 3 the energy gap among the ground states and its one 
spin-flipped excitation is at least of 3.  In this case no first excited state is a single 
spin-flip of the ground state. 

Let us analyse this point in greater detail. For a ground-state configuration so" (the 
series of the N spin variables U which form the ground state a) we define the overlap 
with the first excited state as 

(16) 
1 

o;,,, = ""(Sh? A 

where A runs over all first excited state configurations, a can  take values over all 
ground-state configurations, and the . is the sum over sites of the product of the two spin 
variables. O;,l, is 1 when the ground state a corresponds to a first excited state which 
differs from the configuration a in a single spin-flip. This is the maximum possible 
overlap. If there is the same number of equal spins and different spins 0$,1, = 0. For a 
given N value we define the maximum overlap of the ground state and the first excited 
state as  

O$,I) = m," O&I, (17) 

where the maximum is taken over all configurations which have the minimum energy. 
We plot O&, as a function of N in figure 5. The maximum overlap is 1 only for a few 
values of N (for large-N, the ones of the form 4n + 2) .  For good primes it is always 
very low. 

t We define the overlap q of two configurations 0 and r as y = $ En okrh 
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Figure 5. Oz. , ,  as a function of N. 
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Figure 6. (0,0,1)) as a function of N ,  

More useful information can be gathered if we look at the average ground-state to 
first-excited-state overlap. We define 

where NO is the sum running over all ground states and & is their number. We plot 
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Figure 7. (N - 1) limes the ground-state energy (full curve). first-excited-stale energy (broken 
curve) and the avenge energy of configumtians obtcned by a single spin-flip from the ground 
state (dotted curve) as a function of N. 

( 0 ~ o . l ) )  in figure 6. As N increases, the average overlap decreases, and for N > 22 we 
never find a very large average overlap between the ground and first excited states. 

At last, in figure 7 we plot the ground-state energies, the first-excited-state energies 
and the average energy of configurations obtained by a single spin-flip from the ground 
state (all of them multiplied by ( N  - 1)). The difference between a single spin-flip and 
the first excited state is large, and in this case (even more than in figure 6) the effect 
does not depend dramatically from the cardinality of N .  
A few configurations with very small energy start to dominate the partition function at 
low T c T,. We note that our estimate for the constant A coincides with our finite- 
size estimate for the critical temperature (from the location of the specific-heat peak). 
The relation T, E 1 / A  (which holds in the REM model [15]) seems to apply here with 
reasonable precision. 

This scenario is very similar to the one we are used to seeing in spin glasses, 
when a replica-symmetry broken phase exists. In particular, it reminds us of Derrida's 
random energy model (REM) [15], where at low temperature only a very small set of 
configurations dominates the partition function [15,16]. 
As we can already see from figure 4, the specific heat becomes very small in the low- 
temperature region, and very likely be to exponentially small in the thermodynamical 
limit. We expect that the N-'  corrections (which in the REM 1151 are proportional to 
( N ( p  - pC))-l) dominate the specific heat in the low-temperature phase for N not too 
large. 
Derrida's model does not have the divergence of the specific heat at the transition point 
which we have here. This is likely to be the signature of a transition of a different 
nature than the one in Derrida's model. 

. 
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4. The Golay-Beroasconi approximation and a 6rst replica computation 

Let us now try to give an approximate analytic evaluation of the thermodynamical properties 
of the model. We will follow the approach Golay [4] originally introduced (see also 
Bernasconi work [5J) for the open model, and apply it  to the periodic model. We will stress 
the interest and the obvious limitations of such a simple approximation (which basically 
amounts to considering the correlation functions C, as independent variables). 

Let us consider the periodic model, and the correlation function ck as defined from 
(3). The basic observation is that on a generic random configuration of U the correlation 
functions turn out to also be independent variables, randomly distributed according to a 
Gaussian distribution with variance N .  Therefore for the probability distribution of the 
correlation function Ck we can write 

p(Ck) (2nN)-1/Ze-cf/ZN (19) 

which holds under our statistical-independence hypothesis. Here k can vary from 1 to N .  
Let us take N odd. Since in this case the correIation functions satisfy the relation 

ck = CN-P (20) 

for all k values, the Hamiltonian ( I )  can be rewritten as 

In this case we only need to consider (N - 1)/2 modes. For N even we should add to H 
the contribution at k = N / 2  without the factor 2. 

In this approximation the partition function is given by 

where we have used (20) and (21) to have k running only up to ( N  - 1)/2, Substituting, 
we get 

We have obtained (24) under the assumption that the ut are independent variables (and then 
so are the ck). This is obviously not true as soon as 6 > 0, and the expression (24) fails. 
Indeed the ck are not Gaussian independent random variables. For 6 > 0 when evaluating 
the partition function we sample the tail of the probability distribution P(ck), where the 
expression (19) is not valid (we will see that the high-T expansion does not coincide with 
the correct one even at first order). Here we are trying to understand (since until now we 
have been lacking a better approach: but see later) whether at least in a high-temperature 
phase (24) we can find a useful approximation to the true behaviour of our system. 
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From the approximate result for the partition function of (24) we can compute the 
free-energy density (7). and the usual thermodynamic energy density and entropy. We find 

I f(8) = -(+ I n ( l +  48) - ln(2)) 
B 

48) = - (25) 1 +4p 

s ( p )  = h(2) - In(i + 48) + - 

1 

B 
1 + 4 @ '  

The behaviour of the energy density is quite reasonable, while the entropy density s ( p )  
becomes negative at low temperature (it goes to -cu at T = 0). The entropy density s ( p )  
becomes zero at BG = 10.3702, where the energy density has the value ea i e(&) = 
0.023 54. 

A possible approximate approach to the problem (along the direction hinted at by Golay 
and Bernasconi) would be based on saying that this solution is close to the correct one in 
the high-T phase, for ,6 < 80. One would then claim that a good approximation is to state 
that for 8 > j3c general thermodynamical properties (i.e. the fact that both the specific heat 
and the entropy are not allowed to become negative) imply that the energy density has to 
remain constant 

e ( @ )  = ec; V 8  > P G .  (26) 
We have a scenario which is very reminiscent of the REM [15]. As we have already 

noticed, an obvious drawback of this point of view, which is built on a series of arbitrary 
assumptions, is that it does not reproduce correctly even the first non-trivial order of the 
high-T series expansion. It captures, however, some of the relevant features of the model 
(like, for example, the presence of an abrupt transition at finite T), and it seems worthwhile 
to try to understand its features better. 

Now we will try to apply the replica method to the problem of sequences with low 
autocorrelation (as afirst stage to try to recover the results of the Golay-Bernasconi-Derrida 
(GBD) approximation we have just discussed). We know that replica methods have been 
applied quite successfully [1,2] to the analysis of systems whose behaviour has remarkable 
similarities to one of our low autocorrelation sequences. Yet, until now the replica approach 
has been dealing with a system in which quenched randomness plays a major role. There 
is nothing a priori random in our low autocorrelation sequences, and the replica method 
could seem out of place here. 

However, if it is true that the generic properties of the behaviour of low autocorrelation 
sequences have something to do (at least for not too low T )  with those of a system with 
quenched disorder, then we can hope to use the replica techniques?. 

We will want a random system which mimics the properties of our original ordered 
system. We will have to identify such a system on the basis of some general principle, and 
we will see that this will be more or less easy in the different cases. 

One possible approach is based on considering a Hamiltonian 

I1 (27) 
which depends on the quenched control parameters ( J J ,  which are randomly distributed. 
For a particular realization of the sequence ( J ]  such a random Hamiltonian coincides with 
our original Hamiltonian (in the present case with (21)). Let us suppose that we are able 

t The following conclusions and the replica computation presented in the following pangraphs hove k e n  obtained 
independently for the open model by Bouchaud and M h r d  [IZ]. 
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to use the replica approach to compute the average of the thermodynamic functions for 
the system described by (27). Now we can hope that the result obtained for a generic 
realization of the random variables ( J )  is the same as we would have obtained by selecting 
the exact ( J ]  sequence which leads to the original Hamiltonian (21). In this case the replica 
symmetry gives the correct result for the deterministic model. This way of reasoning is 
potentially very dangerous, and can lead to disaster. The 3D Edwards-Anderson model, once 
understood (for recent progress see [17]), will very probably not lead to the same solution 
of the ferromagnetic 3D Ising model. The issue here deals with how generic is the special 
{ J }  sequence which gives the original deterministic Hamiltonian. and cannot be solved 
a priori. A posteriori. for example, one can verify if the deterministic and the random 
models have the same high-temperature expansion (of course this may lead to surprises in 
the low-temperature region). 

A second possible approach is based on the introduction of a control parameter E ,  and 
of a Hamiltonian 

H C , I J ~ ( ( ~ } )  (28)  
which interpolates from the random Hamiltonian at E = 0 to the deterministic Hamiltonian 
at E = 1. If the interpolation is smooth and there are no phase transitions in the interval 
0 c t c 1, the perturbative expansion around the result E = 0 (which one should be able 
to obtain) could be used to estimate the results for t = I. 

This is the general framework. We hope that, by using one of these approaches, the 
replica method will enable us to obtain qualitathe and quantitative predictions about the 
deterministic problem. 

Let us start by trying to reproduce the CBD result (i.e. the simple approximation we 
have just studied) in the framework of replica theory Our aim will be to consider a soluble 
random model such that the probability distribution of correlation functions is Gaussian, as 
in (19). In the high-temperature phase the free-energy density of such a model should be 
given by the CBD approximation. 

We will consider the Hamiltonian 

In this new model the are not simply correlation functions anymore, but they are given 
by 

where J are quenched random variables with an average value of order 1/N and variance 
1/N. The precise form ofthe distribution is irrelevant. A possible choice forthe distribution 
of the J variables is 

I 
J k .  = 0 with probability 1 - - 

L J  N 
1 

J k .  = 1 with probability - . 
L J  N 

Random J variables allow connections of random site couples i - j .  Since the a’ 
are connected randomly it is reasonable to expect that in the large-N limit the modified 
correlation functions f?k are indeed distributed as independent Gaussian variables. So we 
expect our random model defined by (29) and (30) to have the same behaviour (at least in 
the high-temperature phase) as the deterministic model defined by (19) and (21). 
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The model can be studied by means of the usual replica techniques. The partition 
function 

is quartic in the spin variables U .  We can introduce the variables Xk to disentangle the 
interaction, getting 

(where for lage-N we have written N instead of N - I). 
1% want to compute averages over the { J j  of the free-energy density of the system, 

where the average is a quenched average over the disorder. We can now employ the replica 
trick, rewriting the average over the disorder of the In 2 as 

By adopting the usual abuse of inverting the two limits we finally get 

f ( B )  = ! $ P ) ( B )  (36) 

where 

Computing the average over the disorder of 2" is easy. By assuming a Gaussian 
distribution for the J variablest (with zero expectation value and width 1/N)  we find that 

. .  

(38) 
The second term in the exponential couples the different replicas. We can rewrite it as 

In order to decouple this interaction we write 1 as 

and use the Lagrange multipliers A.,h to rewrite the &functions 

t The result of the computation depends only on the variance of J. Imposing apriori ( J )  = 0 does not change 
the result. 



7630 E Marinari et a1 

Now using (41) in (38) we can integrate over the Xi variables, and disintegrate the sum 
over the U, configurations. We get 

ZI~I(B)" = 1 n(dQ..b) n(d&,~)e-"AL"*e) (42) 
o.h a.b 

where 

A V ,  Q) = G(Q) + F ( N  + V A .  Q )  (43) 
and we have defined 

T ( A ,  Q )  =Tr~&,bf?b.o~ 
where the trace TI is taken over the replica indices, and the integral over Aa,b is taken over 
the imaginary axis. 

In the large-N limit Z,,,(B)" is dominated by its saddlepoint value, i.e. we get that 
- 

where by AsP we have indicated the saddle-point value of (43). 
In the high-temperature phase we can look at the replica-symmetric solution, where 

Q.,b = 0 for a # b .  The saddlepoint equations for A imply that Q... = I (this result is 
valid at all temperatures). In this way the expression for the free-energy reduces to (25). 
The result is, as we promised before, the same as the CBD approximation. 

Before studying the properties of the broken-replica solution of this stationary equation, 
we can get some further insight into the model by considering the following generalization: 

where the quantities ck are defined as in (30). Here we have only changed the number 
of J values which can couple two sites i and j .  Since here we are not dealing with pure 
correlation functions but with terms which are coupled or not according to the value of a 
random variable. there are no reasons for fixing the total number of non-zero J values to 
be of order N2. For a = 1 we recover our previous model. 

The model can be solved for generic LY and one finds results that are very similar to the 
previous case. The only difference is that now 

G(Q) $UTI In 1 + - ( 422>, (47) 

In the limit in which a goes to infinity all sites are coupled and the model describes an 
infinite-range 4-spin interaction, In this limit one gets 

which is the result known for the p = 4 model [16]. For LY going to zero, frustration 
disappears. In other words the models based on H, are related to the generic 4-spin random 
models in the same way as the Hopfield models are related to the Sherrington-Kirkpatrick 
model. 
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In the limit p + 00 the model with a p-spin interaction coincides with the REM [I51 
In the low-temperature phase. replica symmetry is broken at one step [15,16]. In this case 
(where p 4 03) the entropy at the transition and below the transition point is zero. and 
the self-overlap parameter q ( 1 )  jumps from 0 to 1 at the transition point [16]. Let us also 
note that in some sense 1161 the p = 2 Sherrington-Kirkpatrick case is a special case, and 
that as soon as p > 2 things change. For example, as soon as p > 2 the phase transition 
becomes, as far as the function q ( x )  is concerned, first order. 

We have computed the one-step replica-broken solution for our wdependent model. In 
this case the matrices Q and A are described by the breakpoint m and by their value inside 
a block. In the limit n + 0 we find that 

T ( A ,  Q )  = Aq(m - 1) 

We can now solve the saddle-point equations for ASP under the form (49) for the p = 4 
spin interaction (our model for (Y = 00). This gives the free-energy density of the one-step 
replica-broken solution (that is, exact for the p --). cc model). Here we find that the entropy 
at the transition is very small (about 0.01) and that the self-overlap parameter q(1)  is very 
close to 1 (it is greater than 0.95). The GBD approximation describes a scenario with a zero 
entropy at the transition point, and q(1) jumping from 0 to 1. This means that the difference 
between the GBD approximation and the infinite-range 4-spin interaction is of the order of 
a few per cent (with the expectation values of typical thermodynamical observables). 

The situation improves if we look at to our model with 01 = 1. In this case, assuming 
one-step replica-symmetry breaking, we find that the entropy at the transition is tiny (smaller 
than 0.0001) and that the self-overlap parameter q(1)  is very close to 1 (it is greater than 
0.99). The inverse transition temperature is practically identical to the one we have found 
in the GBD approximation (after (25)). Here the Colay-Bernasconi-Derrida approximation 
is practically perfect. 

This completes a quite detailed look at our or-dependent disordered model. We have 
obtained the one-step replica-broken solution of the model, and it has been useful to show 
that the model undergoes a finite-T phase transition to a glassy region, where the partition 
function is dominated by a restricted set of states. The corrections to the GBD approximation 
can be computed and they t u n  out to be very small. 

5. The high-temperature expansion of the low autocorrelation model and a 
HartreeFock resummation 

In the previous section we have used replica theory to analyse and solve a model which does 
not have the same high-temperature expansion as the low autocorrelation model we started 
from, i.e. the one defined from (I) and (3). Altogether we have been acting quite recklessly. 
We have introduced a (maybe not so good) approximation to our original deterministic 
model, and we have defined (in (46) and (30)) and solved a model with quenched random 
disorder which reproduces such an approximation. This has been useful to show that replica 
theory can play an important role even in the understanding of statistical models which do 
not contain quenched disorder in their formulation. Still. now we are interested in stepping 
forward, and getting a deeper understanding of our original model. 
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The first tool we will use to learn more about the full low autocorrelation sequence 
model is the high-temperature expansion. As a matter of principle this can be done in 
a very straightforward way, but on practical grounds the fact that the model is non-local 
creates a lot of complications. For example, the coefficients of the high-?' expansion (of the 
energy density, let us say) are not polynomial in N ,  as they would be for a well behaved 
interaction. Only the leading contribution (in N - ' )  at each order in ,¶ is universal, while 
subleading corrections tend to depend on the cardinality of N (for example, we can have a 
given polynomial for N odd and a different one for N even, and so on with more and more 
complicated behaviour). 

The direct evaluation of the high-temperature approximation in x-space is possible, but 
not very convenient, because of the problems we have just described. We have just used it to 
check the general behaviour of particular classes of diagrams. We have found it convenient 
to instead use the momentum-space representation Hamiltonian (4). We have computed 
the leading terms in N-I of the first three non-trivial ,T' expansion coefficients for the 
free-energy density, i.e. we have only considered connected diagrams i n  the expansion of 
the partition function Z(B). 

For example, the coefficient of the p2 term (for the free-energy density) is 

where 'c' signifies that in the sum we have only included contributions from connected 
diagrams. In order to compute the diagramst one has to analyse separately the case where 
k t  = kz = k3.  the case where two k, are equal and the one where all the three k's are 
different. By using this approach we have been able to find that the first three orders of 
the small-,¶ expansion of the energy density (deduced from the free-energy density by the 
usual relation e(,¶) = -a(pf(,¶))/a,¶) are given by 

e(p )  = 1 - 8g + 1G0B2 + O ( p 3 ) .  (51) 
We have also looked at subleading contributions to the ,¶' energy-density term, both in 

real space and in momentum space. One easily sees that in this case there are diagrams 
which are proportional to 

where 6 ~ ( k )  = 1 w k = O(mod N ) .  A term of this kind gives a non-zero contribution 
only if N is a multiple of 3. 

The number of relevant dia,pms proliferates at the next order in ,¶ (O(p3) for the 
internal energy). Here subleading corrections also contain terms proportional to 

which now also distinguish the N values which are multiples of 5 .  
At last we have been able to check that at order p4 (again for the internal energy) there 

are terms of order N - 5  which even for N odd have a different expression depending on 
whether N = Ifmod 4) or not. 

Indeed the easiest way to compute the high-temperature expansion coefficients turned 
out to be based on the exact solution of the systems with size up to N = 38 we have 
described before (together with the insight about the diagram structure we have described 

t One has to be be cmful in noticing that IB(p)l = IB(-p)I,  in order to avoid double counting. 
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in the former paragraphs). Here we have used the density of states & ( E ) .  The cumulant 
of order k 

( H y  (p  =O) (54) 
can indeed be used to fit the N-J coefficients of the p' term in the high-temperature 
expansion. In better educated models such coefficients would be a simple polynomial in 
N ,  and the information we have (for N up to 38) would allow us to fit a large number of 
terms. Here, on the contrary, we have polynomial behaviour only on selected subsequences 
of N values (which we have discussed before). So the number of terms we have been able 
to work out is quite low. 

Already the term of order 1 in the energy density is different for odd and even N values. 
We find that 

(55) 

where by the subscript to e we indicate the order in p ,  and by the superscripts (e) and (0) 
we indicate even and odd, respectively. The same sh'ucture survives at the next order in ,9, 
giving 

1 
N 

e, (0) ( p ,  N) = 1 - - e t ) ( p ,  N) = 1 

We have been able to check directly from the diagrammatic expansion the full expressions 
(55) and (56) (including all subleading corrections). 

We have already explained that at order p? we get different results depending on whether 
N is a multiples of 3 or not. For N of the form 3n + 1 and 3n + 2 (integer n )  we find 

(3 1008 + 1856 1008) 
e2 Cg, N )  =j?* 160 - - ( N N 2  N 3  

while for N multiples of  3 we get 
I008 + 1856 7.52) 

ea'(@, N) = 0' 160 - - ( N N 2  N 3  

(57) 

where here by the superscripts (3) and (7) we have designated N values which are and are 
not multiples of 3. 

At the next order in p (p3 for the internal energy density) we have only been able to 
find the exact polynomial for N not a multiple of 3 or 5 (which for our N values, and indeed 
up to N = 77, coincide with prime values). Here we had nine numbers (the momenta for 
primes going from 7 to 37) and five coefficients to find. This is redundant enough to allow 
us to check carefully that we did the right thing. For the other N-value subsequences at this 
order, and next orders in p ,  we have not been able to calculate the expansion coefficients. 
Here we find (with obvious notation) 

43520 124612 781312 
N 3 N 2  3 N 3  

-5248 + - - - - - (59) 

As far as the leading N-' term is concerned we have, in this way, gained one order in 

(60) 

our small-p expansion, by finding 

e @ )  = 1 - 8 p  t 160,9* - 5248p3 + O(p4). 
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Can we learn something more about the model in its high-temperature phase? We hope 
so, and i n  order to do that we will now try to write down a statistical model which hopefully 
resums the high-temperature expansion. 

But, for a trivial shift in the energy, we can rewrite the partition function of the low 
autocorrelation model as 

where B, are the Fourier-transformed variables defined in (5). Let us define now the new 
Hamiltonian 

where now B, are fundamental variables of the model. In the case, where U = 2, this 
Hamiltonian coincides (apart from the trivial energy shift) with the one from the original 
model. The case U = 1 will be of great importance, since i n  this case H I  = N for all [u] 
configurations. 

We can obtain a very simple result if we select only the contributions to the high-T 
expansion which come from diagrams in which all momenta are set to be equal. This 
means, for example, we choose from (50) only contributions with kl = k2 = k,. 

It is easy to resum these diagrams. In this case we find that the probability distribution 
for the Bp factorizes in an independent contribution for each momentum, and we get that 

This result cannot be the correct, complete answer, since it implies that IBI2 is a function 
of ,6, while we know that for all ,3 values the correct answer is 

{IBIz) = (0’) = 1. (64) 
However, we will see with pleasure that we are not very far from the correct answer. 

It is clear that leading contributions coming from diagrams where the flowing momenta 
are different exist. and we will have to consider them. These contributions generate an 
interaction in our effective Hamiltonian, and they cannot be neglected. A detailed ixpection 
of the large-N leading contributions in the high-temperature expansion leads c; to conjecture 
that for large-N the partition function of the low autocorrelation model can be written (at 
least in the high-T phase) as 

where the operator 2, is defined as 

the integral is taken over real and imaginary parts of B,,, and g is a function which does 
not depend on v and which we will compute explicitly. 

We have here a guess for the form of P ( B ) .  We have a Gaussian weight over the 
B’s. a weight given by the Hamiltonian and an interaction correction term, the function 
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g. Such a conjecture comes from a comparison with the dominant contributions in the 
high-temperature expansion of the original formulation of the model. For all terms we have 
been able to think about the correspondence holdst. As we shall see later, the expression 
we have conjectured essentially corresponds to a Hartree-Fock approximation. 

Let us start by evaluating the partition function (65) for a generic function g. 
As usual it is convenient to introduce the representation 

1 = dx S ( x  - D) = dx dh exp{ih(x - D)) . (67) s s s  
By inserting the &function the d B  d E  integrals factorize, and we get 

Z,@) = dx lb d,lef(”tS(”)) I dBd~ee-IBlze-“(”2/”~~)e-81B12Y 1 (68) 

where the derivative operator only acts on the last exponential function. 
In order to compute Z,(p) we can use the now familiar expression for the heat kernel. 

Let us consider the real variable z, and %e operator 0 acting on functions f .  The kernel 
of 0, KO, is defined as 

( O f ) ( z )  = / dz‘ K d z ,  z ’ ) f  (z’) , (6% 

If we now consider the operator exp(-haz/8zz] we find that its kernel (the heat kernel) 
has the form 

We can use this last formula to rewrite Z,(p) (the most hansparent approach consists of 
using the real and imaginary parts of B as independent variables, resulting in two real heat 
kernels). Now the integrals over the left-hand variable of the two kernels are Gaussian. 
After integrating them out we are left with the expression 

z,(p) = / dx / dheiNl~/4@+i(~)+ln(@)+~(~,@)i (71) 
lb 

where we have defined p = (1 + 4h)-’, i ( x )  = g ( x )  - i x ,  and 

(72) 

The former expression can be evaluated in the large-N limit by taking its saddle point. 
1 .  ~ ( p ,  p )  E In d B  d~e-@isl’-81Bl*’ I /  

One finds that 
1 

4u 
i ‘ ( x )  + - = 0 

where the expectation value is computed with the effective local Hamiltonian, 

%(B) = pIBI2 + BlB12”. (74) 
We have also to impose that the sum of [BIZ is one, which was a crucial feature of our 

original model. If the expectation value of 181’ is one than the expectation value over the 
effective Hamiltonian also has to be one, which gives us a third equation 

(IB12Ln= 1 .  (75) 
t The doubtful reader will find a different derivation of lhis result in section 6.  
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We have found that the saddle-point free energy is determined from 

The second equation of (76) gives us x as a function of p,  i.e. 

(77) x = 4 ( p - p ) ) .  2 

Now we can use the first equation of (76) to determine the function g. We find that 
1 

2(1 + (1 - X ) ” Z )  
Z(x) = - 

which gives 

(where we have omitted an irrelevant constant). 
Now it easy to compute the saddle-point free-energy density. One only has to use 

the third equation of (76) to determine the saddle-point value of p. The expression for 
In(Z,(j3)) eventually greatly simplifies. 

If we are only interested in computing the expectation value of the energy density we 
can use a shortcut, by noticing that the energy density of the model is the derivative with 
respect to f l  of the logarithm of the partition function, and can be expressed as 

= (~W),R. (80) 

The former identity has to be supplemented by the condition (75), i.e. p is fixed by setting 
the expectation value of IB12 over the effective Hamiltonian to one. In a language suitable 
to field-theory addicts we can say that only tadpole diagrams have survived. The total 
contribution of the tadpoles is fixed by the condition (75). Given the simplicity of the result 
it is quite likely that our proof may be simplified. 

We have tested the correctness of our conjecture by computing the corresponding high- 
temperature expansion and by verifying that the first four coefficients are indeed correct, 
and coincide with (60). Our Hartree-Fock resummation is equivalent, as far as we can see, 
to the complete low autocorrelation model at least in the whole high-T phase. 

6. The  replica approach 

In the previous section we have succeeded in writing a closed form for the solution of our 
model in the high-T phase. We are ready now to try to achieve the main result of this 
paper, and show that replica theory can be used to obtain the solution of a non-random spin 
model. We will define a disordered model which has the correct high-temperature expansion 
of the initial non-random model (and contrary to the GBD case here we will not need an 
approximation). and that can be solved at all temperatures by using the replica method. 

The model we propose is based on the simple observation that the Fourier transform 
is a very special unitary operator. Naively one could think to write a model where the 
Hamiltonian is the one defined in (62) with v = 2, but the basic configurational variables 
which will be integrated over are 

i 
where the U matrices are generic unitary transformations, and compute the thermodynamic 
properties of the model for a random choice of the U matrices. The point here is that the 
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Fourier transform is one particular unitary transformation, and we try to understand what 
happens if we substitute it with a random transformation. 

One has to be slightly more sophisticated than that, since by using generic unitary 
matrices U a t  the first orders of the high-T expansion one already gets a result which is 
different from the one obtained when using the Fourier transform. This effect can be traced 
to the fact that by using a generic unitary transformation we are ignoring the fact that i n  
the original model we were transforming real functions, and there 

- 
B(P)  = B ( - P ) .  (82) 

This reality property turns out to be crucial, and our model with quenched disorder will have 
to account for it. In order to satisfy this constraint we will consider the Fourier transform as 
an orthogonal transformation which carries a real function i n  a complex one, which satisfies 
(82). We introduce the variables A(p) by 

B ( 0 )  = A(1) 

B ( p )  = A(2p) + iA(2p+ I )  

B ( f N )  = A(N) 
1 (83) 

for p = 1, ?(N - 1) 
and (for even N) rewrite the Hamiltonian (62) as 

Our random model will be defined, in  the large-N limit, from the equivalent Hamiltonian 
(we are forgetting contributions of relative order of magnitude N-’) 

where the A variables are defined from the spin variables sj as 

(86) 

and the Op,j are random orthogonal transformations, over which we will integrate. 
The model we have obtained can be studied using the replica approach. In order to 

present the replica computation for models of this kind in a compact way we will describe 
the solution of a model based on unitary matrices, An explicit computation shows that if 
we solve the orthogonal model (86) along the same lines we obtain (apart from a rescaling 
of p )  the same thermodynamical behaviour in  the large-N limit. We define the Hamiltonian 

N I 2  

p=1 
H 3 IC(P)lZ” (87) 

where 
NI2 

1-1 
C(P)  E u p . j  rj (88) 

the U’s are random unitary transformations and 5, = uzj-, + iu2j. We have effectively 
written a model which is based on N / 2  x N / 2  unitary matrices (naively we would have 
used N x N unitary matrices), ensuring in this way of getting the correct normalization of 
the free energy in the high-T expansion. The aim of this section will be to solve this model 
(which will eventually be of interest for us for v = 2) and to show that its high-temperature 
expansion is the same as that for the original low autocorrelation sequence model. 
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We proceed as in section 4 and introduce replicas. We find that 

cx / dU d A d C m  

where with dA and dC we indicate n. , ,h , (p )  and n,,,C.(p), with (a = 1,n) and 
( p  = I ,  i N ) ,  respectively. The integrais are taken over the real and imaginary parts of the 
variables A and C, and the integral over dll is over the unitary group. We have to compute 
an integral of the form 

with C?p,j  = E, ha(p)z;, Tr(RU)  - N ,  and the integral is performed over the unitary 
group. This problem has been solved in full generality by Brezin and Gross [18]. However, 
their formula is more complicated than what we need here. At finite non-zero n, in the 
limit of N going io infinity, only the terms containing one single trace operation survive, 
and the integral is given by 

dUexp{Tr(C2ll+HC))=exp s 
where G(z) is a function the form of which we want to derive. Let us consider the case in 
which the matrix C2 has one single element different from zero, for example Ql, f zN.  
We define the function G(z) from the relation 

The integral over the unitary group is given by 

I = d l l  exp ( + N z U , ~ l  + HC) s 

Here we have used the f a q  that a randomly chosen line of the unitary matrix is only 
constrained to have the sum of its elements equal to one. The last integral can be evaluated 
by using the saddle-point method. We find 



Replica field theov for deterministic models: I 7639 

The stationary point xg of this saddle-point equation gives I - exp ( iNf (2 ) ) .  Using (92) 
we find 

~ ( z )  = - I n ( d T G +  I ) + = .  (95) 
This result can also be derived using the Brezin and Gross formulae [18]. G corresponds 
to the function 2 of the previous section. 

Now we have to compute TrG(S2S2*/N2). It is easy to verify that for all positive integer 
values of P 

T r l  (F) '} = Tr ( (A e)'} 
where A and Q are n x n matrices, defined as 

which implies 

The computation now continues using the standard techniques introduced in section 4. 
First we introduce auxiliary fields R and M associated with the matrices Q and A, 
respectively, 

and analogously for A,b and the Lagrange multipliers Mob 

Putting it all together we find that we need to compute 

F E  / dhdhdCd? dA d M d Q  dR s 
x exp(NG(AQ)] exp ( lC12"} exp{iAC + HCJ.  (101) 

Performing the integration over the A variables we finally obtain that (NIn(Z))-' is given 
by the stationary point of 

Zn = d Q d R d A d M  exp{NA[R, Q , A , M I J  (102) - s  
(where we have defined M 

1 
N n  

(42)- ')  which means 

(103) Bf = -- Asp[R, Q, A ,  MI .  
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The function A is given by 
A 

A [ R , Q . A , M ] =  FdM)+TI ln(M)-Tr-+TrG(AQ)-TrRQ+ F,(R) (104) 4M 
where 

The previous formula is also valid in the case of a continuous distribution of the spins U .  

In the present case the spin take the discrete values i l ,  and we have to substitute for the 
integral by a sum. 

In order to solve the saddle-point equations we start by eliminating some of the auxiliary 
variables. The full set of saddle-point equations for A gives 

After some algebra and using the relation 

I? 1 G' 
G ( z ) = - - -  

42 z 
we can phrase our result in a very simple form. The free energy is given by the stationary 
point of 

A [ M ,  RI = F f ( M )  + F,(R) +TI  ln(4(M - R)) . (111)  

The expectation values of quantities which are local in momentum or in configuration space 
can be computed using, respectively, the simple Hamiltonians 

The saddle-point equations for the stationary free energy are now 

(C,G)M = (&%R = Qn,b ( M - R )  Q =  1 (1 13) 

where the mean values (. . . ) M  and (. . . ) R  are evaluated using the Hamiltonians '& and 'HR, 
respectively. The first condition is a clear consequence of the unitarity of the transformation. 
The second equation has a less clear meaningt. 

t We feel B bit guilty at presenting such a complicated proof for such simple results. but this is the best we have 
been able to do. 
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In the high-temperature phase the different matrices are non-zero only in their diagonal 
part. This can be computed in the annealed case n = 1. In this case the different matrices 
have a unique element Q = I ,  A = h, R = r and M .  The free energy is given by 

p f = - I n / d C d ? ?  exp(  -BIC12"-MlClz) -log(2) (1 14) 

where M is determined by the simple equation 

(ICIZ)M = 1 .  
The internal energy is given by the relation 

which coincides with the corresponding equations of the previous section a part from a 
rescaling of B .  

We have shown that our model reproduces the high-temperature expansion ai  the 
effective action conjectured in the previous section. For a random system it is well known 
that the annealed free energy is a lower bound to the quenched free energy, which enables 
us to develop at least a partial analysis of our results without doing the explicit computation 
of the replica-symmetry breaking in the limit n --f 0. Indeed, let us notice that in this light 
the results of the previous section imply that the ground-state energy of the model is greater 
than 0.025. 

Explicit formulae can be written in the case of onestep replica-symmetry breaking. We 
want all the three matrices R. Q, M to commute. To this end we break each one of these 
matrices into sub-blocks of equal size m. The different elements are, for instance in the 
case of the matrix M,  MO, = MD and M u b  = M I  if the indices (a ,  b) do belong to the 
same sub-block of size m, while otherwise = 0. The same holds for the matrix R. The 
variational parameters are now m. MD, MI ,  RD,  R, and q1 (Q.. = 2), and the saddle-point 
equations are 

(f(C)), = 

dp(h) cx exp (-E) coshn(hR)cosh'"(hl)dhd7E 

( c ) ~  = tanh(hn) + i tanh(h1). 
We have not studied the solutions of these equations in detail, but from the previous 

experience we conjecture that there is a transition very similar to the Demda model, and that 
such a transition corresponds to a first step of replica-symmetry breaking. We expect the 
free-energy lower bound we have obtained from the annealed approximation to be very good. 

dCd?? exp(-BICIzV - (MD - Mi)/C12 - 2 R ( z C ) ) f ( C )  1 
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7. A Discussion of the phase diagram 

If our initial conjecture about our effcctive theory and HartreeFock resummation is correct 
we have solved the model in the high-T phase (with two different approaches). This does 
not mean we have acquired a large deal of information about the low-T phase. Indeed 
the formulae we have found cannot be valid at all temperatures since (analogously to what 
happens in the GBD approximation) it leads to negaiive entropies at low temperatures, and 
the entropy diverges logarithmically at zero temperature. 

In figure 8 we plot our result for the energy as a function of T. In our solution the 
energy goes to zero only at T = 0. In an approximation of the GBD-type the entropy 
becomes zero at a non-zero T,, about 0.1, and the T = 0 energy does not change in  the 
cold phase, and remains fixed to its value at TG and different from zero (i.e. about 0.073). It 
is clear that we have to expect that the high-temperature approximation breaks down before 
T is lowered to the point where the entropy is zero. More precisely it should break in the 
region where the free energy is still negative, since the exact result is that the free energy 
is zero at T = 0 (at least for prime values of N and quite likely for all N). 

The comparison of these analytic results with the exact computations is very interesting, 
and we show it in figure 9. In the whole high-temperature region where the energy varies 
from 1.0 to 0.2 the agreement is very good, strongly supporting the correctness of our 
solution in this temperature range. There is a disagreement in the region where the energy 
becomes smaller and T -+ 0. 

The temperature where the free energy becomes zero is about TF = 0.30 (where the 
internal energy is about 0.074). 

At such low T values the probability of finding the system in an excited state, typically 
a single spin-flip of the ground state, is negligible, since we know that the energy gap is at 
least of order 3. Let us draw a few possible, plausible scenarios: 

The high-temperature approximation is valid down to a temperature very close to Tp. 

Figure 8. The analytic result for the energy as a function of T 
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0 0,5 1 i .5  2 
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Figure 9. Comparison of the analytic resulo and the small-N exact solutions. The full curve 
shows the analytic solution, the dotted curve is for N = 31 and the broken curve is for N = 31. 

At this temperature there is a first-order phase transition to a state with practically zero 
energy densi9. In this case the discontinuity in the energy will be close to 0.074, and 
the discontinuity in entropy close to 0.25. This is the possibility that is favoured from 
our evidence. 
The high-temperature approximation breaks down at a temperature higher that TF, i.e. 
about T = 0.5. In this case the transition could very well be of second order from the 
thermodynamic point of view. We do not have any evidence for this possibility, but we 
cannot exclude it. 
It is also possible that when N + 00 for some values of N the energy density remains 
different from zero. If that is what is happening the analytic resulb obtained by using 
replica theory could be exact at all T values, even in the low-T region for these values 
of N .  In other words we suggest the possibility that two different thermodynamic limits 
can be obtained if we send N --f CO along different sequences. This would be a rather 
strange phenomenon (which can happen only due to the infinite-range nature of the 
forces), however, the non-unicity of the thermodynamic limit is present in a related 
spin-glass model [ I  I ] .  

From our results we are not able to discriminate in a definitive way between these 
possibilities. 

8. Conclusions 

Let us summaize. We have succeeded in obtaining a large body of information about a 
deterministic system by using replica-symmetry theory. We have defined a deterministic, 
quite complex model, and as a first step we have studied a simple approximation. We have 
shown that it is easy to reproduce such a simple approximation by using replica theory. We 
have resummed the high-temperature expansion of the model, and we have shown that the 
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replica theory does indeed allow us to solve the model in the whole high-T region, We 
have found indications about the nature of the transition regime, but we have not been able 
to describe, in detail, the transition point and the low-T phase. 

In order to get the bulk of our analytical results we have written a disordered model, 
where we have substituted the Fourier transform with a generic unitary transformation (after 
some thinning of degrees of freedom). The two models coincide at high temperature, but 
they do (very probably) differ at low temperature. The deterministic model has (very 
probably) zero energy density at zero temperature, while the second one has a ground-state 
energy density equal to 0.025. Still, we have to note that if for generic values of N (non- 
good primes, where we know we get a zero energy density) the deterministic system would 
admit a ground state with energy equal to 0.025N, we could appreciate the effect only for 
N very large, of the order of 200, while we have been able to solve the model only up to 
N = 38. We cannot exclude that in the deterministic model the energy density is indeed 
non-zero for generic values of N ,  or even that for different choices of N (of non-zero 
measure) one could get different behaviour. 

We believe that the use of replica field theory for studying systems without quenched 
noise is a very promising tool, which will be able to lead to precise results both in the high- 
and in the low-temperature phase. Systems without built-in disorder can have a complex 
landscape, and one can use replica theory to understand it. 
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