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Abstract. We study systems without quenched disorder with a complex landscape, and we
use replica-symmetry theory to describe them. We discuss the Golay-Bernasconi-Derrida
approximation of the low autocorrelation model, and we reconstruct it by using replica
calculations. We then consider the full model, its low-T properties (with the help of number
theory) and a Hartree—Fock resummation of the high-temperature series, 'We show that replica
theory atlows us to solve the model in the high-T" phase., Qur solution is based on one-link
imtegral rechniques, and is based on substituting a Fourier transform with a generic unitary
transformation. We discuss this approach as a powerful tool to describe systems with a complex
landscape in the absence of quenched disorder.

1. Introduction

This paper has been prompted by two main motivations. One comes from a problem
whose solution has relevant practical applications, while the other one is more abstract in
nature, and is generated from what we have learned in the last few years about disordered
systems [1,2].

We will be dealing with the problem of finding binary sequences with low
auvtocorrelation [3-5].  Sequences of this kind are important in favouring efficient
communication, and the practical side of the problem is obvious. We hope we will convince
the reader that it is also fascinating from a theoretical point of view.

When we search binary sequences of +1 and —1 having minimal autocorrelation we
are dealing with a completely deterministic problem, and disorder is not a part of the
game, In our starting rules there is nothing random. Stifl, we will see how the system can
indeed have a behaviour that is very much reminiscent of a random system. Changing one
spin to optimize a given set of correlations can increase other correlation functions, with
a competitive effect which turns out to be typical of a system which contains disordered
couplings. We will see that replica-symmetry theory [1,2] can be a useful tool even for
describing this kind of system. We will be able, by using the analogy with a relevant
disordered system, to capture the generaf features of the model. We will try to understand
and stress the differences which distinguish a low autocorrelation model from a spin-glass-
like model; this will lead us to a detailed discussion of the low-temperature properties of
the low autocorrelation model.
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We present a careful investigation of some statistical mechanic aspects of the problem,
by largely extending previous results due to Golay [4] and to Bernasconi [5]. We establish
a relation between this deterministic problem and random spin glasses, which we consider a
very interesting outcome of this study. Some ideas typical of spin glasses, such as replica-
symmetry breaking, can be used successfully in this context.

In section 2 we define the models we will discuss in the rest of the paper, In section 3
we discuss the ground-state structure of the model (also by using well known number
theory; see, for example, [6]) and we begin a discussion of its phase diagram and of
the low-temperature phase. In section 4 we discuss the validity of the Golay—Bernasconi
approximation. We infroduce the replica-symmetry approach, define a disordered model
and study its behaviour. In section 5 we investigate, in more detail, the high-temperature
regime. We perform and describe a high-temperature expansion. We introduce a Hartree—
Fock approximation which allows us to write a closed form for the free-energy.

In section 7 we discuss the full phase diagram of the model. In section 6 we introduce
one more model which can be solved by using the replica approach. The solution is the
same as we get with the Hartree-Fock approximation. In section 8 we draw our conclusions.

The readers who find this problem interesting will be happy to know that much related
material is becoming available. Reference [7] mainly contains a study of the dynamical
properties of the system which uses the tempering Monte Carlo approach [8]. Reference
[2] discusses aging in low autocorrelation models. References {10, 11] introduce and
discuss more models and analogies with random systems (and, in particular, the open low
autocorrelation model; see later). More results, which partially overlap with ours, will be
discussed by Bouchaud and Mézard in [12].

2. Definition of the model

Let us consider a sequence of length N of spin variables o;. They are labelled by a one-
dimensional index j (g, j = 1, N), and can take the values 1. The Hamiltonian is defined
by

1 "f .
H=— Cy (1)
N_1k=l

where C is the sum of the o; — o; correlation functions at a distance k¥ = {{ — f|. The
choice of the boundary conditions, i.e. of the terms we will include in the sum (1), allows
us to define two different models.

e The open model is defined by using open boundary conditions. In this case C is
obtained by summing ¥ — k terms:

N=k
Ce= 004k )
=

o The periodic model is defined by using periodic boundary conditions. Here we are
considering a closed chain, and
N
Ch = ) 070k 13(modNI41 - (3}
Jj=1
Here we have summed N contributions, considering all spin couples at a distance £ on
the closed chain.
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The periodic model has some peculiarities which altow us to study it in greater detail.
The main tool we will use is the Fourier-iransform. We can rewrite the periodic Hamiltonian
as

.
H=——>"(B(pI'-1)+1 *
N-14
where the B(p) are the Fourier-transformed o;, and the Fourier transform is defined as

_ LN e
B(p) 7 JZ:; € aj . (5)
In equation (4) we had to subtract a constant factor since in the sum of (1) we do not include
the constant correlation at distance zero.

In this paper we will focus on the periodic model. Further results about the open model
will be given in [11].

As we have already discussed, much attention has been devoted to the problem of
finding the ground state of such a model [3-5]). Here we will continue this effort, but we
will also (and mainly) extend our study to the thermodynamical behaviour of the model.
We will study its behaviour as a function of the inverse temperature 8 = 1/7T. Our main
efforts will be devoted to the computation of the free-energy density, We define the partition
function of our system as

Zy(p) = ) e PHED ©
fot
where the sum runs over the 2V allowed configurations of the spin variables, and the free-
energy density as

7® = Jim (-5 W@6D). ™

Once again, we note that this approach has both a practical interest and a theoretical
one. It is interesting to study the full thermodynamical behaviour of the system since this
gives more information about the features of the low autocorrelation sequences. We will be
interested, for example, in their number and their basin of attraction, and in their stability
properties (which can be very relevant for practical applications). On the other hand such a
statistical mechanics approach will help us to shift towards the realm of disordered systems.

3. The ground-state energy and a first look at thermodynamics

The ground state of the periodic model defined by the Hamiltonian (1) (with C; given by (3))
is not known in general. No systematic procedure to construct ground-state configurations
for generic N is known. A remarkable exception holds for given values of N, where ad hoc
constructions exist. Such constructions are mainly based on number theory [6], and they
produce spin sequences with a total energy of order 1, i.e. with an energy density e = H/N
of order 1/N (which tends to zero in the thermodynamical limit).

Let us describe a simple constructionf, which works when N is a prime larger than 2
[6]. We set the o; variables to —1, 0 or +1 by identifying

o; = j1%Dmod N @)

t The same spin sequence can be obtained by directly using Legendre quadratic residues {6]. For all positive
integer j < N we compute J = (j - j) (mod N), and we set o7 = +1. In all locations but the Nth one (where
we set oy = 0), which cannot be obtained through this procedure, we set oy = —1,
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In this way we gett o; = =+1 for j < N, and oy = 0. For example, for N = 13, by using
this construction we get the sequence

J 1 2 3 4 5 6 7 8 9 10 11 12 13
ey +1 -1 41 +1t -1 -1 -1 -1 41 +1 -1 41 0.

By following this procedure we have obtained a sequence which, except for its last spin,
is a legitimate one (in the sense that it is composed by *+1). Now we will proceed by first
evaluating the energy of this quasi-legal sequence, and eventually by computing the effect
of modifying the last spin to &1, to get a truly legal sequence. We will show that such a
seguence is, in some cases, a true ground state (i.e. it has the minimum allowed energy).

Computing the energy of such a sequence is an easy task. Theorems well known by
mathematicians [6] tell us that in this case all correlation functions C; are equal to —1 {we
remind the reader we are discussing the periodic model). We can also use Gauss’ theorem
[6] to notice that here the Fourier-transformed variables take the form

B(p) = G(N)op )
where G(N) = 1 if the prime N has the form 4n 4+ | (with positive integer r), and
G(N) = —i if it has the form 4n + 3 (in other words, on our sequences the Fourier-

transformed variables are equal or proportional to the original x-space variables). It is clear
that the Hamiltonian (1) of the periodic model takes the value 1 on our slightly illegal spin
sequence .

Now we have to understand what happens when we modify the spin oy, by setting it
to &=1. It is easy to see that, when we do, the Hamiltonian changes by a finite amount.
Indeed, for N of the form 4n < 3 the Hamiltonian does not change, and keeps it value of
1. The point is that (as can be easily verified by inspection) the 31 sequences are, in this
case, anfisymmetric around the site N. For N of the form 4n + 1 the %] sequences are
symmetric around the site &, and on the fully legal sequence H takes a value of 5.

Since we are considering ¥ odd, it is clear that for N prime of the form 4rn 4 3 the two
fully legal sequences we have built (and the sequences obtained by using the translational
invariance of the problem, and the +1 symmetry) are true ground states. This is because
for N odd the minimum valee allowed for each €, 1s 1, and the minimum value allowed
for H is 1. We have exhibited configurations with the minimal allowed energy, i.e. ground
states,

Let us state again our conclusion. In the case of ¥ prime of the form 4n + 3 we
have obtained a thermodynamical ground state, whose energy density goes to zero when
the volume goes to infinity. Translational invariance and spin-flip invariance imply that the
degeneracy of the ground state is at least 2/,

For other values of N, for example, of the form N = 27 — 1, there are alternative
technigues to construct the ground state, based, for example, on the theory of Galois fields
[6]. For example, for N = 2% — 1 = 144 115 188075855871 one finds that the sequence
which satisfies the relation

O’j =O'j_240’j_57 (10)

is a ground state. If we exclude the trivial case of o; identically equal to 1 (which is not a
ground state), such a sequence is unique, apart from a translation} [6, 13].

i A theorem by Fermat [6] tells us that if j is not 2 multiple of N than j¥—1 = I, mod N. Therefore in this
case ji‘m'“ = =],

f The sequence is specified by its first p = 57 elements. Therefore there are 27 — ] different sequences, which is
exactly the number of possible translations. It can be shown that every subsequence of p elements appears once
and once only, apart from the subsequence with all 1's, which is forbidden.
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It is rather interesting to note that in this case the Fourier transform is also very similar
to the original sequence. One finds that there exists a value of s such that

B(p) = 0pis - (11)

The deep reasons for this duality between the configuration and Fourier space escape us.

It is quite remarkable that this last sequence is considered, to ail practical effects, a
good random sequence (see, for example, [13]). We can summarize the status of things
by saying that the ground state of our model can be obtained as the output of a random
number generator! This is surprising, but maybe not so much. When designing a random
number generator one wants bit sequences with low autocorrelation. This means that for
large values of N the correlation functions should not be proportional to &, A true sequence
of random numbers should have autocorrelations of order N'/2. One is doing ‘better’ than
this by obtaining sequences with autocorrelation of order 1, and does not seem to cause any
practical problem.

For generic valnes of N we do not have any method to explicitly exhibit the ground state,
and we do not know the ground-state energy. The very existence of the thermodynamic
limit is non-trivial. One could get different results when N goes to infinity depending on
the aritbmetic properties of the & sequence one selects. We shall see later that in the high-
temperature region the N~! corrections are different for sequences consisting of even or
odd values of N. The corrective terms proportional to N3 also change depending whether
one selects an N series such that N is or is not a multiple of 3. We will see that, in general,
things become more and more complex when we look at higher-order corrections.

In order to get the first hints about the ground states and the thermodynamical behaviour
of the system we have used two approaches. In the first approach we have solved exactly
(by computing the density of states by exact enumeration) systems of size up to N = 38.
By examining all configurations we have computed the number of configurations of a given
energy A (E) as a function of E. We have looked at the ground-state energy Ejp, and stored
and analysed the ground-state and the first-excited-state configurations (at least for some of
the N values). From A (E) we are able to reconstruct the partition function, the free-energy
density and all the related thermodynamical guantities.

As a second step we have looked for the ground-state energy by using a minimization
procedure. For a given N value we start from a random o; configuration, and we minimize
its energy by single spin-flips. We repeat this procedure until satisfied. We assume we have
reached the ground state when the minimum energy has been found F timest. In the case
where we also have the exact solution (N < 38) this procedure easily gives the correct
ground-state energy. The choice of F = 100 recognitions is still safe in the region with
N going up to N = 50. Low-energy states with a small basin of attraction are the most
dangerous. For the case of the good prime ¥ = 47 (where by good we mean here of the
form 4n + 3) the first excited state is found a number of times of the order of 50 before
finding the true ground state (which in this case, as we have explained, we know exactly).

In figure } we plot (N — 1) times the ground-state energy as a function of N. The small
filled triangles are from the minimization search. For N < 38 they are circled by larger
empty circles (which reminds the reader that in this case we also have the exact result,
which coincides with the the minimization result).

At first glance the ground-state energy (Ep) depends quife randomly on N, but we notice
some regular patterns which can be of some importance.

t In [14] we are using the same procedure to try to find all solutions of the mean-field equations for the random-
field Ising model in 3D.



7620 E Marinari et al

—T T | A e S S S S S S S

w -
.
.
.
180 | . E
N
a
-
]
o'
o - @ b
; -
= L
] e
@ -] a
-3 e ®
s & ]
- -] LY —
20 o .
-] @ ® a
@ ]
]
e &, . g @
e ©
-]
@
ol %og J
] 1 ] 1 i
¢ [T 20 ] 0 50

Figure 1. The ground-state energy times (N — 1) as a function of #. The small full triangles
are from the minimization search. For & 38, where we alsp have the exact solution, the small
triangles are circled by larger open circles.

e For N prime of the form 4n -+ 3 the ground-state energy is the one given by the exact
construction we have described before. This is a test of our programs and procedures.

e For N of the form 4n -+ 2, n zero and a positive integer, i.e. for all of the n we have
analysed, we find

Eny=4. (12)

We cannot be sure that this behaviour is not an accident, but we have to note that we
find it for all values of N of this kind.
e For N of the form 4n + 1, n = 8, ie. for N 2 33, we have found that

Enes5—r. (13)

For N of this form, even for N prime, our number-theory-based ground-state
construction does not necessarily give a ground state.

We can use these results to try some claims about the N — oo limit for the ground-state
energy. The merit factor, used for estimating how good a low autocorrelation sequence is,
for a sequence of length ¥ (and N large, or to agree with standard definitions we need to
multiply by N and divide by N — 1) is given by

FW = — (14)

If the energy goes to a constant value in the Jarge-N limit, that means that the system
will have a zero energy density, and a diverging merit factor. We know for the primes N
of the form 4n + 3 this is exactly what bappens. But we also know that such N values
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Figure 2. A'(E), the number of configuraticns of eneigy E as a function of E. {(a) N =31 (a
good prime); (b) N = 33 (of the form 4 + 1, non-pame); (c) N = 34 {of the form 4n + 2),
(d) N = 37 (of the form 4n + [, prime).

have zero measure, and selecting such a sequence could not be a reliable way to go to
the infinite-volume limit for generic values of N, If the behaviour we have described
in (12) and (13) survives in the large-N limit, we have two finite measure sequences
(including one N value over 2) which asymptotically have a zero energy density. For the
other N values we are not able to draw even tentative and qualitative conclusions like the
above.

The number of configurations of a given energy M (E) allows us, as we have explained,
to evaluate the thermodynamical properties of the system. In figures 2{(a)-(d} we show
MN(E), the number of configurations of epergy E as a function of E, for N = 31 {a good
prime), 33 (of the form 4r + 1, non-prime), 34 (of the form 4a 4 2) and 37 (of the form
4n + 1, prime), respectively. In figures 3 and 4 we show the internal energy minus the
ground-state energy (normalized between zero and one) and the specific heat as a function
of T, for the same N values and a smaller volume, N = 19, respectively.

At this point we are able to draw a few tentative conclusions.
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Figure 3. The internal energy E(T) minus the ground-state energy (and normalized between
zero and one) as a function of T, respectively for N = 19 and 31 (good primes chain and dotted
curve, respectively), 33 (of the form 4n + 1, non-prime, short broken curve}, 34 (of the form
4n + 2, long broken curve) and 37 (of the form 4n + |, prime, full corve).
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Figure 4. As in figure 3, but for the specific heat as a function of T.
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e Changing N by a small amount, typically AN = 1 {when N is already of order 40),
induces large variations in the thermodynamic observable quantities in the low-T region.
Fluctuations from one volume size & to a similar one are large. and macroscopic. Such
fluctuations forbid any simple extrapolation to the N — oo infinite-volume limit (they
decrease, however, for increasing N}, Their amplitude is compatible with also being
proportional to N~! at finite temperature.

e A pronounced peak in the specific heat increases with N, suggesting strongly that in
the infinite-volume limit the system undergoes a phase transition. The T position of the
maximum of the specific heat decreases with increasing N (in an irregular pattern). In
the region of N =~ 3040 from the position of the peak we estimate a critical temperature
T. ~ 0.5. The nature and the order of the phase transition are difficult to assess,

e The density of states A'(E) for low energies depends on E approximately as

N(E) =2N e (15)

(remember that the minimal degeneracy of the ground state is 2ZN). In our N region
A turns out to be strongly dependent on N. Such a dependence can be fitted well by
a linear behaviour, This is the same effect we can see in the N dependence of the
location of the peak in figure 4. For our large-N values (of order 30-40) the constant
A is of the order of 1.5,

e The configurations with energy slightly larger that the ground-state energy are on average
not similar to the ground state. The typical mutual overlap of a ground state and a first
excited state is not large when N increasest. In particular, typical first-excited-state
configurations are not obtained by a single spin-flip operation on one of the ground
states. The configurations which are generated by a single spin-flip on the ground state
have, on average, energy higher than the first excited state. For example, in the case
of N prime of the form 4n + 3 the energy gap among the ground states and its one
spin-flipped excitation is at least of 3. In this case no first excited state is a single
spin-flip of the ground state.

Let us analyse this point in greater detail. For a ground-state configuration s§ (the
series of the N spin variables ¢ which form the ground state &) we define the overlap
with the first excited state as

1
Of 1y = T max (sg -5 (16)
where A runs over all first excited state configurations, « can take values over all
ground-state configurations, and the - is the sum over sites of the product of the two spin
variables. O( , is 1 when the ground state o corresponds to a first excited state which
differs from the configuration « in a single spin-flip. This is the maximum possible
overlap. If there is the same number of equal spins and different spins O ;, = 0. For a
given N value we define the maximum overlap of the ground state and the first excited
state as

O,y =max O, (17)
where the maximum is taken over all configurations which have the minimum energy.
We plot Of‘é 1y s a function of N in figure 5. The maximum overlap is 1 only for a few

values of & (for large-N, the ones of the form 4n + 2). For good primes it is always
very low.

T We define the overlap g of two configurations ¢ and T as ¢ = % i Ok
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Figure 6. {1y} as a function of N,

More usefu] information can be gathered if we look at the average ground-state to
(18)

first-excited-state overlap. We define

1
{Opay = No Z 0.1y
[£4
where N is the sum running over all ground states and N is their number. We plot
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Figure 7. (N — 1) times the ground-state energy (full curve), first-excited-state energy (broken
curve) and the average energy of configurations obtained by a singie spin-flip from the ground
state (dotted curve) as a function of ¥,

{Ow.1y} in figure 6. As N increases, the average overlap decreases. and for N > 22 we
never find a very large average overlap between the ground and first excited states.

At last, in figure 7 we plot the ground-state energies, the first-excited-state energies

and the average energy of configurations obtained by a single spin-flip from the ground
state (all of them multiplied by (& — 1}). The difference between a single spin-flip and
the first excited state is large, and in this case {even more than in figure 6) the effect
does not depend dramatically from the cardinality of N.
A few configurations with very small energy start to dominate the partition function at
low T < T,. We note that our estimate for the constant A coincides with our finite-
size estimate for the critical temperature (from the location of the specific-heat peak).
The relation T; >~ 1/A (which holds in the REM model] [15]) seems to apply here with
reasonable precision.

This scenario is very similar to the one we are used to seeing in spin glasses,
when a replica-symmetry broken phase exists. In particular, it reminds us of Derrida’s
random energy model {(REM) [15], where at low temperature only a very small set of
configurations dominates the partition function [15, 16].

As we can already see from figure 4, the specific heat becomes very small in the low-
temperature region, and very likely be to exponentially smali in the thermodynamical
limit. We expect that the ¥~! corrections (which in the REM [15] are proportional to
{(N(B — B:))™") dominate the specific heat in the low-temperature phase for N not too
large.

Derrida's model does not have the divergence of the specific heat at the transition point
which we have here. This is likely to be the signature of a transition of a different
nature than the one in Derrida’s model.
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4. The Golay-Bernasconi approximation and a first replica computation

Let us now try to give an approximate analytic evaluation of the thermodynamical properties
of the model. We will follow the approach Golay [4] originally introduced (see aiso
Bernasconi work [5]) for the open model, and apply it to the periodic model. We will stress
the interest and the obvious limitations of such a simple approximation (which basically
amounts 1o considering the correlation functions C, as independent variables).

Let us consider the periodic model, and the correlation function C, as defined from
{3). The basic observation is that on a generic random configuration of ¢ the correlation
functions turn out to also be independent variables, randomly distributed according to a
Gaussian distribution with variance #. Therefore for the probability distribution of the
correlation function Cp we can write

P(Cy) = (2 N)y~ /2 e=CirN (19)

which holds under our statistical-independence hypothesis. Here & can vary from 1 to N,
Let us take N odd. Since in this case the correlation functions satisfy the relation

Cr = Cny (20)
for all k& values, the Hamiltonian (1) can be rewritten as
) (N-=1}/2
H= —— %" C}. 21
k=1

In this case we only need to consider (¥ — 1)/2 modes. For ¥ even we should add to ¥
the contribution at k = N /2 without the factor 2.
In this approximation the partition function is given by

(N-1)/2

z=2" ] { f dc, P(Ck)e-f-“”‘m] (22)
k=1

where we have used (203 and (21) to have & running only up to (N — 1)/2, Substituting,
we get

(N—1)12 . .
k=1

For N large we get finally
Z(B) = eN(ln(i'-)-ﬁln(iHﬁD ] 24)

We have obtained (24) under the assumption that the o; are independent variables (and then
so are the Cy). This is obviously not true as soon as 8 > 0, and the expression (24} fails,
Indeed the C; are not Gaussian independent random variables. For 8 > 0 when evaluating
the partition function we sample the tail of the probability distribution P(Cy), where the
expression (19) is not valid (we will see that the high-T expansion does not coincide with
the correct one even at first order). Here we are trying to understand (since until now we
have been lacking a better approach: but see later) whether at least in a high-temperature
phase (24} we can find a useful approximation to the true behaviour of our system.
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From the approximate result for the partition function of (24) we can compute the
free-energy density (7), and the usual thermodynamic energy density and entropy. We find

£(8) = é(ﬁ In(1 +48) — In(2))

1
e(f) = m‘g (25)
B

—1n2) =1 _F_
$(8) =In(2) - §In(1 +48) + T2

The behaviour of the energy density is quite reasonable, while the entropy density s{8)
becomes negative at low temperature (it goes to —oo at T =0). The gntropy density ${5)
becomes zero at fg = 10.3702, where the energy density has the value eg = ¢(8g) =
0.023 54,

A possible approximate approach to the problem (along the direction hinted at by Golay
and Bernasconi) would be based on saying that this solution is close to the correct one in
the high-T phase, for 8 < Bg. One would then claim that a good approximation is to state
that for 8 > fg general thermodynamical properties (i.e. the fact that both the specific heat
and the entropy are not allowed to become negative) imply that the energy density has to
remain constant

e(B) = eg VB2 Bc. (26)

‘We have a scenario which is very reminiscent of the REM [15]. As we have already
noticed, an obvious drawback of this point of view, which is built on a series of arbitrary
assumptions, is that it does not reproduce correctly even the first non-trivial order of the
high-T" series expansion. It captures, however, some of the relevant features of the model
(like, for example, the presence of an abrupt transition at finite T'), and it seems worthwhile
to try to understand its features better.

Now we will try to apply the replica methoed to the problem of sequences with low
autocorrelation (as a first stage to try to recover the results of the Golay-Bernasconi—Derrida
{GED) approximation we have just discussed). We know that replica methods have been
applied quite successfully [1,2] to the analysis of systems whose behaviour has remarkable
simijlarities to one of our low autocorrelation sequences. Yet, until now the replica approach
has been dealing with a system in which quenched randomness plays a major role. There
is nothing a priori random in our low autocorrelation sequences, and the replica method
could seem out of place here,

However, if it is true that the generic properties of the behaviour of low autocorrelation
sequences have something to do (at least for not too low T) with those of a system with
quenched disorder, then we can hope to use the replica techniquest.

We will want a random systern which mimics the properties of our original ordered
system. We will have to identify such a system on the basis of some generat principle, and
we will see that this will be more or less easy in the different cases.

One possible approach is based on considering a2 Hamiltonian

Hyp{lo}) (27)

which depends on the quenched control parameters {/}, which are randomly distributed.
For a particular realization of the sequence {/} such a random Hamiltonian coincides with
our original Hamiltonian (in the present case with (21)). Let us suppose that we are able

1 The following conclusions and the replica computation presented in the following paragraphs have been obtained
independently for the open model by Bouchaud and Mézard [12].
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to use the replica approach to compute the average of the thermodynamic functions for
the system described by (27). MNow we can hope that the result obtained for a generic
realization of the random variables {/} is thie same as we would have obtained by selecting
the exact {J} sequence which leads to the original Hamiltonian (21). In this case the replica
symmetry gives the correct result for the deterministic model. This way of reasoning is
potentially very dangerous, and can lead to disaster. The 3D Edwards—Anderson model, once
understood (for recent progress see [17]), will very probably not lead to the same solution
of the ferromagnetic 3D Ising model. The issue here deals with how generic is the special
{J} sequence which gives the original deterministic Hamiltonian, and cannot be solved
a priori. A posteriori, for example, one can verify if the deterministic and the random
models have the same high-temperature expansion (of course this may lead to surprises in
the low-temperature region).

A second possible approach is based on the introduction of a control parameter €, and
of a Hamiltonian

He (oD (28)

which interpolates from the random Hamiltonian at € = 0 to the deterministic Hamiltonian
at ¢ = 1. If the interpolation is smooth and there are no phase transitions in the interval
0 < ¢ < 1, the perturbative expansion around the result ¢ = 0 (which one should be able
to obtain) could be used to estimate the results for ¢ = 1.

This is the general framework. We hope that, by using one of these approaches, the
replica method will enable us to obtain qualjtative and quantitative predictions about the
deterministic problem.

Let us start by trying to reproduce the GBD result (i.e. the simple approximation we
have just studied) in the framework of replica theory, Our aim will be to consider a soluble
randam model such that the probability distribution of correlation functions is Gaussian, as
in (19). In the high-temperature phase the free-energy density of such a model should be
given by the GBD approximation.

We will consider the Hamiitonian

5 N-D2 "
= E ¢t. (29)
k=1
In this new model the C; are not simply correlation functions anymore, but they are given
by

ék = Z‘]’i-i T Ty (30)
m.j

where J are quenched random variables with an average value of order 1/N and variance
1/N. The precise form of the distribution is irrelevant. A possible choice for the distribution
of the J variables is

JE =0 with probability 1-— %

(31)

k
g

1l

1
1 ith probability —.
with probability 5

Random J variables allow connections of random site couples i — j. Since the o;
are connected randomly it is reasonable to expect that in the large-N limit the modified
correlation functions € are indeed distributed as independent Gaussian variables. So we
expect our random model defined by (29) and (30) to have the same behaviour (at least in
the high-temperature phase) as the deterministic mode} defined by (19) and (21).
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The model can be studied by means of the usual replica techniques. The partition
function

2ﬂ {N—I)/Z -
Zip(B) = exp {-m > C;f} (32)
{o] k=1

is quartic in the spin variables o. We can introduce the variables X, to disentangle the
interaction, getting

Y orodx, X; i ‘

(where for large-N we have written & instead of N — 1).
We want to compute averages over the {J} of the free-energy density of the system,

. ] — ————
7@ = jin (-5 G4

where the average is a guenched average over the disorder. We can now employ the replica
trick, rewriting the average over the disorder of the In Z as

Y Lo Z(B)y—1
@)= Jim (- im 22— &)
By adopting the usual abuse of inverting the two limits we finally get
£ () = lim $™(8) (36)
where
. 1 Ziy(By -1
"Wigy= 1 — IS T
6" (B = lim ( A ) 37

Computing the average over the disorder of Z” is easy. By assuming a Gaussian
distribution for the J variables} (with zero expectation value and width 1/N) we find that

z (ﬁ)n_Zﬁfﬁ( dXﬂ )CX i——l—- i(xu)z_l_ (ixuo.ﬂo.a)z}
R @1 k=1 a=i \WOTP 1 38 Lotk 2 L\ KmTr )

(38)

The second term in the exponential couples the different replicas. We can rewrite it as
P2 X (Zvévi)( Zof‘of’) x;. (39)
ab G i
In order to decouple this interaction we write 1 as
N ‘
1= nfan‘bS(Zaj“af— NQM) (40
a,b j=1
and use the Lagrange multipliers A, , to rewrite the §-functions

N
I = l_b[ [fan,;, dA, 5 exp {iAu,b( 2 o*faf’ - NQQ,;,) H . 41

J

1 The result of the computation depends only on the variance of J. [mposing a prieri (S} = 0 does not change
the result.
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Now using (41) in (38) we can integrate over the X{ variables, and disintegrate the sum
over the o, configurations. We get

Zn By = f [T Qe [ J(dAqp)e Y4102 (42)
ab a.b
where
AN =GN+ FM+TA, Q) (43)

and we have defined
G(Q) =1iTrin{8.»+4802,)

—1In (Zexp { Z Aa,ba“ab}) (44)
d,b

(e}
TA D=Tr {Aa,be.a}

where the trace Tr is taken over the replica indices, and the integral over A, is taken over
the imaginary axis.
In the large-N limit Z(;(f)* is dominated by its saddle-point value, i.e. we get that

g — LAse
87(6) = 5 5)

where by Agp we have indicated the saddle-point value of {43).

In the high-temperature phase we can look at the replica-symmetric solution, where
Q. = 0 for a # b. The saddle-point equations for A imply that Q, , = | {this result is
valid at all temperatures). In this way the expression for the free-energy reduces to (25).
The result is, as we promised before, the same as the GBD approximation.

Before studying the properties of the broken-replica solution of this stationary equation,
we can get some further insight into the model by considering the following generalization:

3 alN/2 _

Ao = 7o D 2

F(A)

(46)

<3

where the quantities é,g are defined as in (30). Here we have only changed the number
of J values which can couple two sites { and j. Since here we are not dealing with pure
correlation functions but with terms which are coupled or not according to the value of a
random variable, there are no reasons for fixing the total number of non-zero J values to
be of order N2. For & = 1 we recover our previous model,
The model can be solved for generic e and one finds results that are very similar to the
previous case. The only difference is that now
2
G(Q) = %aTr In (1 + ﬂj%) .
In the limit in which o goes to infinity all sites are coupled and the model describes an
infinite-range 4-spin interaction. In this limit one gets

G(Q) = ja'?— 4> 0%, (48)
a.b

(47)

which is the result known for the p = 4 model [16]. For o going to zero, frustration
disappears. In other words the models based on H, are related to the generic 4-spin random
models in the same way as the Hopfield models are relatgd to the Sherrington—Kirkpatrick
model.
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In the limit p —» oo the model with a p-spin interaction coincides with the REM [135].
In the low-temperature phase, replica symmetry is broken at one step {15, 16]. In this case
{where p — oc) the entropy at the transition and below the transition point is zero, and
the self-overlap parameter g(1) jumps from O to 1 at the transition point [16]. Let us also
note that in some sense [16] the p = 2 Sherrington-Kirkpatrick case is a special case, and
that as socn as p > 2 things change. For example, as soon as p > 2 the phase transition
becomes, as far as the function g(x) is concerned, first order.

We have computed the one-step replica-broken solution for our e-dependent model. In
this case the matrices @ and A are described by the break-point m and by their value inside
a block. In the limit # — O we find that

G(Q) = @i;nﬂln (1 + %(I —qz)) + iIn (1 + jT-ﬁE(qzm+ I —q2))

4m
+eo
F(A) =) — ;}I—ln f_ . «/Ee-ff2 cosh™ (v22x) — In(2) (49)

T{A, Q) = Ag(m —1).

We can now solve the saddle-point equations for Agp under the form (49) for the p =4
spin interaction (our model for & = c0). This gives the free-energy density of the one-step
replica-broken solution (that is, exact for the p — oo model). Here we find that the entropy
at the transition is very small (about 0.01) and that the self-overiap parameter g(1) is very
close to 1 (it is greater than 0.95). The GBD approximation describes a scenario with a zero
entropy at the transition point, and g(1) jumping from 0 to 1. This means that the difference
between the GBD approximation and the infinite-range 4-spin interaction is of the order of
a few per cent (with the expectation values of typical thermodynamical observables).

The situation improves if we look at to our model with ¢ = 1. In this case, assuming
one-step replica-symmetry breaking, we find that the entropy at the transition is tiny (smaller
than 0.0001) and that the self-overlap parameter (1} is very close to 1 (it is greater than
0.99). The inverse transition temperature is practically identical to the one we have found
in the GBD approximation (after (25)). Here the Golay-Bernasconi-Derrida approximation
is practically perfect.

This completes a quite detailed look at our ¢-dependent disordered model. We have
obtained the one-step replica-broken solution of the model, and it has been useful to show
that the modei undergoes a finite-T" phase transition to a glassy region, where the partition
function is dominated by a restricted set of states. The corrections to the GED approximation
can be computed and they turn out to be very small.

5. The high-temperature expansion of the low autocorrelation model and a
Hartree-Fock resummation

In the previous section we have used replica theory to analyse and solve a model which does
not have the same high-temperature expansion as the low autocorrelation model we started
from, i.e. the one defined from (1) and (3). Altogether we have been acting quite recklessly.
We have introduced a (maybe not so good} approximation to our original deterministic
model, and we have defined (in (46) and (30)) and solved a model with quenched random
disorder which reproduces such an approximation. This has been useful to show that replica
theory can play an important role even in the understanding of statistical models which do
not contain quenched disorder in their formulation. Siill. now we are interested in stepping
forward, and getting a deeper understanding of our original model.
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The first tool we will use to learn more about the full low autocorrelation sequence
model is the high-temperature expansion. As a matter of principle this can be done in
a very straightforward way, but on practical grounds the fact that the model is non-local
creates a lot of complications. For example, the coefficients of the high-7 expansion (of the
energy density, let us say) are not polynomial in N, as they would be for a well behaved
interaction. Only the leading contribution (in N~') at each order in 8 is universal, while
subleading corrections tend to depend on the cardinality of & (for example, we can have a
given polynormial for N odd and a different one for N even, and so on with more and more
complicated behaviour).

The direct evaluation of the high-temperature approximation in x-space is possible, but
not very convenient, because of the problems we have just described. We have just used it to
check the general behaviour of particular classes of diagrams. We have found it convenient
to instead use the momentum-space representation Hamiltonian (4). We have computed
the leading terms in N~! of the first three non-trivial 8% expansion coefficients for the
free-energy density, 1.e. we have only considered connected diagrams in the expansion of
the partition function Z(8).

For example, the coefficient of the 82 term (for the free-energy density) is

1
A}meﬁﬁ[k; lstkmB(kz)l“ls(kan“l (50)
11 K2, A3
where ‘c’ signifies that in the sum we have only included contributions from connected
diagrams. In order to compute the diagrams} one has to analyse separately the case where
ky = ky = k3, the case where two £; are equal and the one where all the three &’s are
different. By using this approach we have been able to find that the first three orders of
the small-8 expansion of the energy density (deduced from the free-energy density by the

usual relation e(8) = —8(Af (B))/88) are given by
e(B) =1 — 8B + 160>+ O(5°). (51)

We have also looked at subleading contributions to the 82 energy-density term, both in
real space and in momentum space. One easily sees that in this case there are diagrams
which are proportional to

1
%3 20w (3h) , (52)
ky

where Sy (k) =1 &= k = 0(mod N). A term of this kind gives & non-zero contribution
only if N is a multiple of 3.

The number of relevant diagrams proliferates at the next order in 8 (O(8°%) for the
internal energy). Here subleading corrections also contain terms proportional to

3 DSk (53)
ki

which now also distinguish the N values which are multiples of 5,

At last we have been able to check that at order 8* (again for the internal energy) there
are terms of order N~ which even for N odd have a different expression depending on
whether N = 1{mod 4} or not.

Indeed the easiest way to compute the high-temperature expansion coefficients turned
out to be based on the exact solution of the systems with size up to N = 38 we have
described before (together with the insight about the diagram structure we have described

t One has to be be careful in noficing that | B(p)| = | B{— p}|, in order to avoid double counting,
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in the former paragraphs). Here we have used the density of states Ny (E). The cumulant
of order k

(HH (B=0 (54)

can indeed be used to fit the N~/ coefficients of the B* term in the high-temperature
expansion. In better educated models such coefficients would be a simple polynomial in
N, and the information we have (for N up te 38) would allow us to fit a large number of
terms, Here, on the contrary, we have polynomial behaviour only on selected subsequences
of N values (which we have discussed before). So the number of terms we have been able
to work out is quite low,

Already the term of order 1 in the energy density is different for odd and even N values.
We find that

B N) =1 —% @B Ny = 1 (55)

where by the subscript to e we indicate the order in 8, and by the superscripts (e) and (o)
we indicate even and odd, respectively. The same structure survives at the next order in g,
giving
24 16
e (8, N) = ﬁ(—8+ ~ - E)

N (56)

. 32
(B, N) = ﬁ(-8+ﬁ-)-

We have been able to check directly from the diagrammatic expansion the full expressions
(55) and (56) (including all subleading corrections).

We have already explained that at order 8% we get different results depending on whether
N is a multiples of 3 or not, For N of the form 3z 4 1 and 3r 4+ 2 (integer n) we find

1008 1856 1008
(3) N 2 160 — _ 57
6. =100~ 2+ TF - 22 57
while for N multiples of 3 we get
1008 1856 752
eg”(ﬁ, NY=g8 (160 ahve + T F) (58)

where here by the superscripts (3) and (3) we have designated N values which are and are
not multiples of 3.

At the next order in 8 (8> for the internal energy density) we have only been able to
find the exact polynomial for N not a multiple of 3 or 5 (which for our NV values, and indeed
up to N = 77, coincide with prime values). Here we had nine numbers (the momenta for
primes going from 7 t0 37) and five coefficients to find. This is redundant enough to allow
us to check carefully that we did the right thing. For the other N -value subsequences at this
order, and next orders in 8, we have not been able to calculate the expansion coefficients.
Here we find (with obvious notation)

33 1 43520 124672 781312
e;3'5’(ﬁ,N)=53(1———)(-5243+ Ty )

As far as the leading N =% term is concerned we have, in this way, gained one order in
our small-8 expansion, by finding

e(8) = 1— 88 + 1605% — 52488* + O(8%). (60)

(59)
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Can we learn something more about the model in its high-temperature phase? We hope
s0, and in order to do that we will now try to write down a statistical model which hopefully
resums the high-temperature expansion.

But, for a trivial shift in the energy, we can rewrite the partition function of the low
autocorrelation model as

N,fz
2(8) = f ]_[[dcn]eXP{ Zinl“} (61)
i=1
where B, are the Fourier-transformed variables defined in (5). Let us define now the new
Hamiltonian
o N2

H.(B) = -——-Zw 2 (62)

where now B, are fundamental variables of the model. In the case, where v = 2, this
Hamiltonian coincides (apart from the trivial energy shift) with the one from the original
model. The case v = 1 will be of great importance, since in this case H; = N for all {o}
configurations.

We can obtain a very simple result if we select only the contributions to the high-7
expansion which come from diagrams in which all momenta are set to be equal. This
means, for example, we choose from (50) only contributions with &; = ks = k.

It is easy to resum these diagrams. In this case we find that the probability distribution
for the B, factorizes in an independent contribution for each momentum, and we get that

(F(B)) = f dBdE f(BYP(B)
P(B) o exp (| BP — BIBI").

This result cannot be the correct, complete answer, since it implies that |B|? is a function
of 8, while we know that for all 8 values the comrect answer is

4B = (oh =1. (64)

However, we will see with pleasure that we are not very far from the correct answer.

It is clear that leading contributions coming from diagrams where the flowing momenta
are different exist, and we will have to consider them. These contributions generate an
interaction in our effective Hamiltonian, and they cannot be neglected. A detailed inspection
of the large- N leading contributions in the high-temperature expansion leads us to conjecture
that for large-N the partition function of the low autocorrelation model can be written (at
least in the high-T phase) as

(63}

N2 N2

N2
Z,(f) = fl_[[dB dB,] exp{ Z;BFF}exp{%Ng(D)}exp{—ﬁZHU(B)} {65)
I p=1

where the operator D is defined as
22 @

N o=t 9B,9B,

(66)

the integral is taken over real and imaginary parts of Bp, and g is a function which does
not depend on v and which we will compute expticitly.

We have here a guess for the form of P(B). We have a Gaussian weight over the
B’s, a weight given by the Hamiltonian and an interaction correction term, the function
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g. Such a conjecture comes from a comparison with the dominant contributions in the
high-temperature expansion of the original formulation of the model. For all terms we have
been able to think about the correspondence holdsi. As we shall see later, the expression
we have conjectured essentially corresponds to a Hartree—Fock approximation.

Let us start by evaluating the partition function (65) for a generic function g.

As usual jt is convenient to introduce the representation

l= [d.xa‘(x —-D) = [dxfdk explir(x — D)}, (67)
By inserting the 8-function the dB dB integrals factorize, and we get
Z,(8) = fdxf dX e’ﬂf““’g(‘”)[dB dBe~1BF -i@* /08 aﬁ)e-,swgi"]N/Z (68)
iR

where the derivative operator only acts on the last exponential function.

In order to compute Z,{8) we can use the now familiar expression for the heat kernel.
Let us consider the real variable z, and the operator O acting on functions f. The kernel
of O, Ko, is defined as

(0F)@) = f A7 Koz, (&) 69)

If we now consider the operator exp{—18%/8z%} we find that its kernel (the heat kernel)
has the form
1 —~(z—2)* /4

2R ' 7o

We can use this last formula to rewrite Z,(8) (the most transparent approach consists of
using the real and imaginary parts of B as independent variables, resulting in two real heat
kernels). Now the integrals over the left-hand variable of the two kernels are Gaussian.
After integrating them out we are left with the expression

Zy(B) = f dx f Al ed MA@+ LB 1)
iR

where we have defined p = (14 44)7, §(x) = g(x) — +x, and

LB, p) = ln{ f dB dEe-ﬂfﬂf’"ﬁ'BI”}. (72)

The former expression can be evaluated in the large-N limit by taking its saddle point.
One finds that

|
- _
gx)+ ol 0
X 1 2
=+ = = (B =0 73)
4u - p
where the expectation value is computed with the effective local Hamiltonian,

H(B) = u|B*+ giB[*. (74)

We have also to impose that the sum of | B|? is one, which was a crucial feature of our
original model. If the expectation value of | B|? is one than the expectation value over the
effective Hamiltonian also has to be one, which gives vs a third equation

{IBPesc = 1. (75)

t The doubtful reader will find a different derivation of this result in section 6.
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We have found that the saddle-point free energy is determined from

] x 1
g' —_——= 0 — - =1 2 =],
g+ in a2 + P B etr = 1 (76)
The second equation of (76) gives us x as a function of y, i.e.
x=4(u - p¥). (77)

Now we can use the first equation of (76) to determine the function g. We find that
1

B0 (78

8x)=

which gives
Bxy=—In(J 4+ 1 —x)++1—x (79)

{where we have omitied an irrelevant constant),

Now it easy to compute the saddle-point free-energy density. One only has to use
the third equation of (76) to determine the saddle-point value of u. The expression for
In(Z,(B)) eventually greatly simplifies.

If we are only interested in computing the expectation value of the energy density we
can use a shortcut, by noticing that the energy density of the model is the derivative with
respect to 8 of the logarithm of the partition function, and can be expressed as

e(B) = (|BI*)etr. (80)

The former identity has to be supplemented by the condition (75), i.e. u is fixed by setting
the expectation value of | B> over the effective Hamiltonian to one. In a language suitable
to field-theory addicts we can say that only tadpole diagrams have survived. The total
contribution of the tadpoles is fixed by the condition (75). Given the simplicity of the result
it is quite likely that our proof may be simplified.

We have tested the correctness of our conjecture by computing the corresponding high-
temperature expansion and by verifying that the first four coefficients are indeed correct,
and coincide with (60). Our Hartree-Fock resummation is equivalent, as far as we can see,
to the complete low autocorrelation model at least in the whole high-T phase,

6. The replica approach

In the previous section we have succeeded in writing a closed form for the solution of our
model in the high-T phase. We are ready now to try to achieve the main result of this
paper, and show that replica theory can be used to obtain the solution of a non-random spin
model. We will define a disordered model which has the correct high-temperature expansion
of the initial non-random model (and contrary to the GBD case here we will not need an
approximation), and that can be solved at all temperatures by using the replica method.

The model we propose is based on the simple observation that the Fourier transform
is a very special unitary operator. Naively one could think to write a model where the
Hamiltonian is the one defined in (62) with v = 2, but the basic configurational variables
which will be integrated over are

B(p)EZUF-,"Uf (81)
i

where the U matrices are generic unitary transformations, and compute the thermodynamic
properties of the model for a random choice of the U matrices. The point here is that the
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Fourier transform is one particular unitary transformation, and we try to understand what
happens if we substitute it with a random transformation.

One has to be slightly more sophisticated than that, since by using generic unitary
matrices U at the first orders of the high-T expansion one already gets a result which is
different from the one obtained when using the Fourier transform. This effect can be traced
to the fact that by using a generic unitary transformation we are ignoring the fact that in
the original model we were transforming real functions, and there

B(p) = B(—p)- (82)

This reality property turns out to be crucial, and our model with quenched disorder will have
to account far it. In order to satisfy this constraint we will consider the Fourier transform as
an orthogonal transformation which carries a real function in a complex one, which satisfies
(82). We introduce the variables A(p} by

B(O) = A(1) B(3N) = A(N)

| , (83)
B(p)=AQR2p)+iAQ2p+1) for p= I,E(N—l)
and (for even ) rewrite the Hamiltonian (62) as
(N=1)/2
H= Y [A@p)+iAQRp+ DI +]AD + AN, (84)
p=1

Our random model will be defined, in the large-N limit, from the equivalent Hamiltonian
(we are forgetting contributions of relative order of magnitude N=')
N2
H= Z |A(2p — 1) +iACP)[* (85)
p=l1
where the A variables are defined from the spin variables s; as

N
ApY = Op,j0; (36)
J=1

and the O, ; are random orthogonal transformations, over which we will integrate.

The model we have obtained can be studied using the replica approach. In order to
present the replica computation for models of this kind in a compact way we will describe
the solution of a model based on unitary matrices. An explicit computation shows that if
we solve the orthogonal model (86) along the same lines we obtain (apart from a rescaling
of B) the same thermodynamical behaviour in the large-N limit. We define the Hamiltonian

NS2
H=) IC(pP (87)
p=1
where
N/2
Cpy=) Upiy (88)
Jj=1

the U’s are random unitary transformations and 7, = os;_| + ioy;. We have effectively
written a model which is based on N/2 x N/2 unitary matrices (naively we would have
used N x N unitary matrices). ensuring in this way of getting the correct normalization of
the free energy in the high-T" expansion. The aim of this section will be to solve this model
{which will eventually be of interest for us for v = 2) and to show that its high-temperature
expansion is the same as that for the original low autocorrelation sequence model,
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We proceed as in section 4 and introduce replicas. We find that

7" x dedAdCd}LdC

N2

% Zcxp { Z [Z ce

it} a p=1

N/Z
+(i(xa(p)c‘*(p) —Aa(p)z Up.ﬂf) + HC)“ >
i=1

where with dX and dC we indicate ]’IM A (p) and Ha.p Co(p), with (@ = [,n) and
{(p=1, %N ), respectively. The integrals are taken over the real and imaginary parts of the
variables A and C, and the integral over dU/ is over the unitary group. We have to compuie
an integral of the form

Ni2
deexp{ > sz,,,,-u,,,j+uc] (90)

p.j=1

with @, ; = 3, A (p)ef, Te(QU)Y ~ N, and the integral is performed over the unitary
group. This problem has been solved in full generality by Brezin and Gross [18]. However,
their formula is more complicated than what we need here. At finite non-zero a, in the
limit of N going to infinity, only the terms containing one single trace operation survive,
and the integral is given by

deexp{Tr(ﬂU+HC)}=exp{%NTrG(Q;i*)} (91)

where G(z) is a function the form of which we want to derive. Let us consider the case in
which the matrix £ has one single element different from zero, for example Q) = %zN .
We define the function G(z) from the relation

I= f dU exp {INzU\,1 + HC) = exp {NG (5127} . (92)

The integral over the unitary group is given by

! _—_de exp (4NzUy,; + HC)

=fdxa(f§x§_ 1) exp [4v2x)

zfdxl(l —x;")‘Wz exp {$Nzx }. (93)

Here we have used the fact that a randomly choser line of the unitary matrix is only

constrained to have the sum of its elements equal to one. The last integral can be evaivated
by using the saddle-point methed. We find
I~ f dx; exp (LNF(x1, 2)

=fdx| exp (3N (log(1 - x?) +zx1)). (94)
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The stationary point xp of this saddle-point equation gives f ~ exp (%N f (Z)). Using (92)
we find

G)=—-In(vl+z+ D+~1+7z. 95)

This result can also be derived using the Brezin and Gross formulae [18]. G corresponds
to the function g of the previous section.
Now we have to compute Tr G(Q20"*/N?). It is easy to verify that for all positive integer

values of P
aon\*
Tr{( 3 ) }=Tr{(AQ)‘°} (96)
where A and Q are # x » matrices, defined as
N2 N2
Agp= -—Zumwmb Qup = }:rk 7 ©7)

which implies

Tr c(m) — Tt G(A Q). ©8)

The computation now continues using the standard techniques introduced in section 4.
First we introduce auxiliary flelds R and M associated with the matrices Q and A,

respectively,
1 —_—
] = l—lfdQ“bs(Qﬂb - ﬁ er‘r{’)
f dQus dRyp exp {:Rah(gab - Zr ; )} ©9)

and analogously for Aab and the Lagrange muitipliers M,;
i —_—

1= dAg 8 Agp — — ALY A )
l:b]f b(ah N; (P (P))

. . 1 —_—
~T1 f dAup dMup exp {IMM (Aab -— Zx(p)“x(mb)} . (100)
ub N ik
Putting it all together we find that we need to compute

ﬁZ/ddedCd'c"'fdAdeQdR
T

- 1 — = 1 —
X exp {IM(A -N Zp:/\p/\p) } exp {1R(Q -5 ;r,-r,-)]
x exp{NG(AQ)} exp {|C|**} exp{irC + HC}. (101)
Performing the integration over the A variables we finally obtain that (¥ In(Z))~! is given
by the stationary point of
?:fdeRdAdM exp{NA[R, 0, A, M1} (102)

(where we have defined M = (4M)~") which means

8 = —i AsplR, 0, A, M]. (103)
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The function A is given by
A
AR, Q. A MY= Ff(MY+TrIn(M) = Tr— +TrG(AQ) —Tr RO + F;(R) (104)

1M
where

exp( Fi(M)} = f dcdC exp{ —BY IC* - anMa.bZ*:}
a a.b

exp{ F(R)} = f d{z} exp [ Zﬁa.brur—h]. (105)

b

The previous formula is also valid in the case of a continuous distribution of the spins o.
In the present case the spin take the discrete values +1, and we have to substitute for the
integral by a sum.

In order to solve the saddle-point equations we start by eliminating some of the auxiliary
variables. The full set of saddle-point equations for A gives

A 3 F(R)
— — — A A
aR., Qun + 3Ron (106)
9A 1
—_— = — G'(A =0
A (4M)ab+ (QG' (A Q))uy (107)
8A
= =Ry + (AG(AQ)ap = 0 (108)
aQab
34 AF(M) (1) ( A )
= — — | = (), 1
oM oM N\, T \IaE), (109)
After some algebra and using the relation
1 ¢
My =——-— (110)
4z 2

we can phrase our result in a very simple form. The free energy is given by the stationary
point of

A[M, R] = F(M)Y+ F(R) +Tr In(4(M — R)). (111

The expectation values of quantities which are local in momentum or in configuration space
can be computed using, respectively, the simple Hamiltonians

Hu=—BY_ 1Ca* =) CaMapCh,
a a,b

' (112)

Hp = Z RebTuTh .
ub

The saddle-point equations for the stationary free energy are now
(CaCotpt = {TaTo}r = Qarp M-R) Q=1 (113)

where the mean values -+ )5 and {- - -} are evaluated using the Hamiltonians M, and Hg,
respectively. The first condition is a clear consequence of the unitarity of the transformation.
The second equation has a less clear meaningi.

t We feel a bit guilty at presenting such a complicated proof for such simple results, but this is the best we have
been able to do.
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In the high-temperature phase the different tmatrices are non-zero only in their diagonal
part. This can be computed in the annealed case n = 1. In this case the different matrices

have a unique element § =1, A = A, R =r and M. The free energy is given by
ﬁf:—lndedE exp{ — BICI* — M|C*} - log(2) (114)
where M is determined by the simple equaticn
(ICP ) =1. (115)
The internal energy is given by the relation
) = 2L = (1c ) (116)

which coincides with the corresponding equations of the previous section a part from a
rescaling of 8. .

We have shown that our model reproduces the high-temperature expansion of the
effective action conjectured in the previous section. For a random system it is well known
that the annealed free energy is a lower bound to the quenched free energy, which enables
us to develop at least a partial analysis of our results without deing the explicit computation
of the replica-symmetry breaking in the limit n — 0. Indeed, let us notice that in this light
the results of the previous section imply that the ground-state energy of the model is greater
than 0.025.

Explicit formulae can be written in the case of one-step replica-symmetry breaking. We
want all the three matrices R, @, M to commute. To this end we break each one of these
matrices into sub-blocks of equal size m. The different elements are, for instance in the
case of the matrix M, M,, = Mp and M,;, = M, if the indices (a, b} do belong to the
same sub-block of size m, while otherwise M., = 0. The same holds for the matrix R. The
variational parameters are now m, Mp, M1, Rp, R; and ¢, (0., = 2), and the saddle-point
equations are

f du(@) (1CP =2

[d,u(z)i(C)le = fdp(h)l(r);,|2=q1 (117)
{(Mp—Rp)+(m— g (M1 — R} =1
(M — R4+ (m-2)g:) + (Mp - Rp)qy =0

where
3
due(z) o exp (—i)Z(z)m dzdz

(F(O), = f 4C AT exp (—BICI — (Mp — MICT: — 2REC)) £(C) s

h 2
dp(h) o exp ( | }l ) cosh™ (hr) cosh™ (i) dh dh
1

{T)y = tanh{hg) + itanh{hy).

We have not studied the solutions of these equations in detail, but from the previous
experience we conjecture that there is a transition very similar to the Derrida model, and that
such a transition corresponds to a first step of replica-symmetry breaking. We expect the
free-energy lower bound we have obtained from the annealed approximation to be very good.
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7. A Discussion of the phase diagram

If our initial conjecture about our effective theory and Hartree—Fock resummation is correct
we have solved the model in the high-T phase (with two different approaches). This does
not mean we have acquired a large deal of information about the low-T phase. Indeed
the formulae we have found cannot be valid at all temperatures since {analogously to what
happens in the GBD approximation) it leads to negative entropies at low temperatures, and
the entropy diverges logarithmically at zero temperature.

In figure 8 we plot our result for the energy as a function of T. In our solution the
energy goes to zero only at T = 0. In an approximation of the GBD-type the entropy
becomes zero at a non-zero Tg, about 0.1, and the T = 0 energy does not change in the
cold phase, and remains fixed to its value at Tg and different from zero (i.e. about 0.025). It
is clear that we have to expect that the high-temperature approximation breaks down before
T is lowered to the point where the entropy is zero. More precisely it should break in the
region where the free energy is still negative, since the exact result is that the free energy
is zero at T = 0 (at least for prime values of N and quite likely for all N).

The comparison of these analytic results with the exact computations is very interesting,
and we show it in figure 9. In the whole high-temperature region where the energy varies
from 1.0 to 0.2 the agreement is very good, strongly supporting the correctness of our
solution in this temperature range. There is a disagreement in the region where the energy
becomes smaller and T — 0.

The temperature where the free energy becomes zero is about T = 0.30 (where the
internal energy is about 0.074).

At such low T values the probability of finding the system in an excited state, typicaily
a single spin-flip of the ground state, s negligible, since we know that the energy gap is at
jeast of order 3. Let us draw a few possible, plausible scenarios:

e The high-temperature approximation is valid down to a temperature very close to T%.

P S —

0.3

01

15 2

IS Y

Figure 8. The analytic result for the energy as a function of T,
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Figure 9. Comparison of the analytic results and the small-N exact solutions. The full curve
shows the analytic solution, the dotted curve is for N = 31 and the broken curve is for ¥ = 37,

At this temperature there is a first-order phase transition to a state with practically zero
energy density. In this case the discontinuity in the energy will be close to 0.074, and

" the discontinuity in entropy close to 0.25. This is the possibility that is favoured from
our evidence.

e The high-temperature approximation breaks down at a temperature higher that T%, ie.
about T = 0.5. In this case the transition could very well be of second order from the
thermodynamic point of view. We do not have any evidence for this possibility, but we
cannot exclude it.

e It is also possible that when N — co for some values of N the energy density remains
different from zero. If that is what is happening the analytic results obtained by using
replica theory could be exact at all T values, even in the low-T region for these values
of N. In other words we suggest the possibility that two different thermodynamic limits
can be obtained if we send N — oo along different sequences. This would be a rather
strange phenomenon (which can happen only due to the infinite-range nature of the
forces), however, the non-unicity of the thermodynamic limit is present in a related
spin-glass model [11].

From our results we are not able ¢o discriminate in a definitive way between these
possibilities.

8. Conclusions

Let us summarize. We have succeeded in obtaining a large body of information about a
deterministic system by using replica-symmetry theory. We have defined a deterministic,
gquite complex model, and as a first step we have studied a simple approximation. We have
shown that it is easy to reproduce such a simpie approximation by using replica theory. We
have resummed the high-temperature expansion of the model, and we have shown that the
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replica theory does indeed allow us to solve the model in the whole high-T region, We
have found indications about the nature of the transition regime, but we have not been able
to describe, in detail, the transition point and the low-T phase.

In order to get the bulk of our analytical results we have written a disordered model,
where we have substituted the Fourier transform with a generic unitary transformation (after
some thinning of degrees of freedom). The two models coincide at high temperature, but
they do (very probably) differ at low temperature. The deterministic model has (very
probably) zero energy density at zero temperature, while the second one has a ground-state
energy density equal to 0.025, Still, we have to note that if for generic values of ¥ (non-
good primes, where we know we get a zero energy density) the deterministic system would
admit a ground state with energy equal to 0.025%, we could appreciate the effect only for
N very large, of the order of 200, while we have been able to solve the mode] only up to
N = 38. We cannot exclude that in the deterministic model the energy density is indeed
non-zero for generic values of N, or even that for different choices of N (of non-zero
measure) one could get different behaviour.

We believe that the use of replica field theory for studying systems without quenched
noise is a very promising tool, which will be able to lead to precise results both in the high-
and in the low-temperature phase. Systems without built-in disorder can have a complex
landscape, and one can use replica theory to understand it
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